Fundamentals of Numerical Weather Prediction


Book Description

Numerical models have become essential tools in environmental science, particularly in weather forecasting and climate prediction. This book provides a comprehensive overview of the techniques used in these fields, with emphasis on the design of the most recent numerical models of the atmosphere. It presents a short history of numerical weather prediction and its evolution, before describing the various model equations and how to solve them numerically. It outlines the main elements of a meteorological forecast suite, and the theory is illustrated throughout with practical examples of operational models and parameterizations of physical processes. This book is founded on the author's many years of experience, as a scientist at Météo-France and teaching university-level courses. It is a practical and accessible textbook for graduate courses and a handy resource for researchers and professionals in atmospheric physics, meteorology and climatology, as well as the related disciplines of fluid dynamics, hydrology and oceanography.




Numerical Weather and Climate Prediction


Book Description

This textbook provides a comprehensive yet accessible treatment of weather and climate prediction, for graduate students, researchers and professionals. It teaches the strengths, weaknesses and best practices for the use of atmospheric models. It is ideal for the many scientists who use such models across a wide variety of applications. The book describes the different numerical methods, data assimilation, ensemble methods, predictability, land-surface modeling, climate modeling and downscaling, computational fluid-dynamics models, experimental designs in model-based research, verification methods, operational prediction, and special applications such as air-quality modeling and flood prediction. This volume will satisfy everyone who needs to know about atmospheric modeling for use in research or operations. It is ideal both as a textbook for a course on weather and climate prediction and as a reference text for researchers and professionals from a range of backgrounds: atmospheric science, meteorology, climatology, environmental science, geography, and geophysical fluid mechanics/dynamics.




Atmospheric Modeling, Data Assimilation and Predictability


Book Description

This book, first published in 2002, is a graduate-level text on numerical weather prediction, including atmospheric modeling, data assimilation and predictability.




Uncertainties in Numerical Weather Prediction


Book Description

Uncertainties in Numerical Weather Prediction is a comprehensive work on the most current understandings of uncertainties and predictability in numerical simulations of the atmosphere. It provides general knowledge on all aspects of uncertainties in the weather prediction models in a single, easy to use reference. The book illustrates particular uncertainties in observations and data assimilation, as well as the errors associated with numerical integration methods. Stochastic methods in parameterization of subgrid processes are also assessed, as are uncertainties associated with surface-atmosphere exchange, orographic flows and processes in the atmospheric boundary layer. Through a better understanding of the uncertainties to watch for, readers will be able to produce more precise and accurate forecasts. This is an essential work for anyone who wants to improve the accuracy of weather and climate forecasting and interested parties developing tools to enhance the quality of such forecasts. Provides a comprehensive overview of the state of numerical weather prediction at spatial scales, from hundreds of meters, to thousands of kilometers Focuses on short-term 1-15 day atmospheric predictions, with some coverage appropriate for longer-term forecasts Includes references to climate prediction models to allow applications of these techniques for climate simulations




Numerical Weather and Climate Prediction


Book Description

This textbook provides a comprehensive yet accessible treatment of weather and climate prediction, for graduate students, researchers and professionals. It teaches the strengths, weaknesses and best practices for the use of atmospheric models. It is ideal for the many scientists who use such models across a wide variety of applications. The book describes the different numerical methods, data assimilation, ensemble methods, predictability, land-surface modeling, climate modeling and downscaling, computational fluid-dynamics models, experimental designs in model-based research, verification methods, operational prediction, and special applications such as air-quality modeling and flood prediction. This volume will satisfy everyone who needs to know about atmospheric modeling for use in research or operations. It is ideal both as a textbook for a course on weather and climate prediction and as a reference text for researchers and professionals from a range of backgrounds: atmospheric science, meteorology, climatology, environmental science, geography, and geophysical fluid mechanics/dynamics.







Fundamentals of Meteorology


Book Description

This book is dedicated to the atmosphere of our planet, and discusses historical and contemporary achievements in meteorological science and technology for the betterment of society. The book explores many significant atmospheric phenomena and physical processes from the local to global scale, as well as from the perspective of short and long-term time scales, and links these processes to various applications in other scientific disciplines with linkages to meteorology. In addition to addressing general topics such as climate system dynamics and climate change, the book also discusses atmospheric boundary layer, atmospheric waves, atmospheric chemistry, optics/photometeors, electricity, atmospheric modeling and numeric weather prediction. Through its interdisciplinary approach, the book will be of interest to researchers, students and academics in meteorology and atmospheric science, environmental physics, climate change dynamics, air pollution and human health impacts of atmospheric aerosols.




Weather Analysis and Forecasting


Book Description

Weather Analysis and Forecasting is a practical guide to using potential vorticity fields and water vapor imagery from satellites to elucidate complex weather patterns and train meteorologists to improve operational forecasting. In particular, it details the use of the close relationship between satellite imagery and the potential vorticity fields in the upper troposphere and lower stratosphere. It shows how to interpret water vapor patterns in terms of dynamical processes in the atmosphere and their relation to diagnostics available from weather prediction models. The book explores topics including: a dynamical view of synoptic development; the interpretation problem of satellite water vapor imagery; practical use of water vapor imagery and dynamical fields; significant water vapor imagery features associated with synoptic dynamical structures; and use of water vapor imagery for assessing NWP model behavior and improving forecasts. Applications are illustrated with color images based on real meteorological situations. The book's step-by-step pedagogy makes this an essential training manual for forecasters in meteorological services worldwide, and a valuable text for graduate students in atmospheric physics and satellite meteorology. * Shows how to analyze current satellite images for assessing weather models' behavior and improving forecasts * Provides step-by-step pedagogy for understanding and interpreting meteorological processes * Includes full-color throughout to highlight "real-world" models, patterns, and examples




Mountain Weather Research and Forecasting


Book Description

This book provides readers with a broad understanding of the fundamental principles driving atmospheric flow over complex terrain and provides historical context for recent developments and future direction for researchers and forecasters. The topics in this book are expanded from those presented at the Mountain Weather Workshop, which took place in Whistler, British Columbia, Canada, August 5-8, 2008. The inspiration for the workshop came from the American Meteorological Society (AMS) Mountain Meteorology Committee and was designed to bridge the gap between the research and forecasting communities by providing a forum for extended discussion and joint education. For academic researchers, this book provides some insight into issues important to the forecasting community. For the forecasting community, this book provides training on fundamentals of atmospheric processes over mountainous regions, which are notoriously difficult to predict. The book also helps to provide a better understanding of current research and forecast challenges, including the latest contributions and advancements to the field. The book begins with an overview of mountain weather and forecasting chal- lenges specific to complex terrain, followed by chapters that focus on diurnal mountain/valley flows that develop under calm conditions and dynamically-driven winds under strong forcing. The focus then shifts to other phenomena specific to mountain regions: Alpine foehn, boundary layer and air quality issues, orographic precipitation processes, and microphysics parameterizations. Having covered the major physical processes, the book shifts to observation and modelling techniques used in mountain regions, including model configuration and parameterizations such as turbulence, and model applications in operational forecasting. The book concludes with a discussion of the current state of research and forecasting in complex terrain, including a vision of how to bridge the gap in the future.




Practical Meteorology


Book Description

A quantitative introduction to atmospheric science for students and professionals who want to understand and apply basic meteorological concepts but who are not ready for calculus.