Fundamentals of Offshore Engineering


Book Description

Fundamentals of Offshore Engineering addresses the basics of design for offshore oil and gas production systems and examines the health, safety, and environmental (HSE) aspects in the oil and gas industry with emphasis toward safety measures in design and operations. It also covers fundamental issues of crude oil and natural gas exploration and extraction and also includes coverage of seismic surveys and green energy systems. Details of offshore platforms, describing the types, historical development, basics of analysis and design, environmental loads, and potential hazards are also provided. The book serves as a useful resource for universities that teach offshore engineering to senior undergraduate and graduate students as well as a guide for practicing engineers. Includes coverage of wave loads, wind loads, ice loads, and fire loads on structures. Discusses offshore pipelines and subsea engineering to help readers understand the fundamentals of petroleum production and related pipeline installation.




Essentials of Offshore Structures


Book Description

Essentials of Offshore Structures: Framed and Gravity Platforms examines the engineering ideas and offshore drilling platforms for exploration and production. This book offers a clear and acceptable demonstration of both the theory and application of the relevant procedures of structural, fluid, and geotechnical mechanics to offshore structures. It




Offshore Mechanics


Book Description

Covers theoretical concepts in offshore mechanics with consideration to new applications, including offshore wind farms, ocean energy devices, aquaculture, floating bridges, and submerged tunnels This comprehensive book covers important aspects of the required analysis and design of offshore structures and systems and the fundamental background material for offshore engineering. Whereas most of the books currently available in the field use traditional oil, gas, and ship industry examples in order to explain the fundamentals in offshore mechanics, this book uses more recent applications, including recent fixed-bottom and floating offshore platforms, ocean energy structures and systems such as wind turbines, wave energy converters, tidal turbines and hybrid marine platforms. Offshore Mechanics covers traditional and more recent methodologies used in offshore structure modelling (including SPH and hydroelasticity models). It also examines numerical techniques, including computational fluid dynamics and finite element method. Additionally, the book features easy-to-understand exercises and examples. Provides a comprehensive treatment for the case of recent applications in offshore mechanics for researchers and engineers Presents the subject of computational fluid dynamics (CFD) and finite element methods (FEM) along with the high fidelity numerical analysis of recent applications in offshore mechanics Offers insight into the philosophy and power of numerical simulations and an understanding of the mathematical nature of the fluid and structural dynamics with focus on offshore mechanic applications Offshore Mechanics: Structural and Fluid Dynamics for Recent Applications is an important book for graduate and senior undergraduate students in offshore engineering and for offshore engineers and researchers in the offshore industry.




Mooring System Engineering for Offshore Structures


Book Description

The mooring system is a vital component of various floating facilities in the oil, gas, and renewables industries. However, there is a lack of comprehensive technical books dedicated to the subject. Mooring System Engineering for Offshore Structures is the first book delivering in-depth knowledge on all aspects of mooring systems, from design and analysis to installation, operation, maintenance and integrity management. The book gives beginners a solid look at the fundamentals involved during mooring designs with coverage on current standards and codes, mooring analysis and theories behind the analysis techniques. Advanced engineers can stay up-to-date through operation, integrity management, and practical examples provided. This book is recommended for students majoring in naval architecture, marine or ocean engineering, and allied disciplines in civil or mechanical engineering. Engineers and researchers in the offshore industry will benefit from the knowledge presented to understand the various types of mooring systems, their design, analysis, and operations. - Understand the various types of mooring systems and the theories behind mooring analysis - Gain practical experience and lessons learned from worldwide case studies - Combine engineering fundamentals with practical applications to solve today's offshore challenges




Springer Handbook of Ocean Engineering


Book Description

This handbook is the definitive reference for the interdisciplinary field that is ocean engineering. It integrates the coverage of fundamental and applied material and encompasses a diverse spectrum of systems, concepts and operations in the maritime environment, as well as providing a comprehensive update on contemporary, leading-edge ocean technologies. Coverage includes an overview on the fundamentals of ocean science, ocean signals and instrumentation, coastal structures, developments in ocean energy technologies and ocean vehicles and automation. It aims at practitioners in a range of offshore industries and naval establishments as well as academic researchers and graduate students in ocean, coastal, offshore and marine engineering and naval architecture. The Springer Handbook of Ocean Engineering is organized in five parts: Part A: Fundamentals, Part B: Autonomous Ocean Vehicles, Subsystems and Control, Part C: Coastal Design, Part D: Offshore Technologies, Part E: Energy Conversion




Design of Foundations for Offshore Wind Turbines


Book Description

Comprehensive reference covering the design of foundations for offshore wind turbines As the demand for “green” energy increases the offshore wind power industry is expanding at a rapid pace around the world. Design of Foundations for Offshore Wind Turbines is a comprehensive reference which covers the design of foundations for offshore wind turbines, and includes examples and case studies. It provides an overview of a wind farm and a wind turbine structure, and examines the different types of loads on the offshore wind turbine structure. Foundation design considerations and the necessary calculations are also covered. The geotechnical site investigation and soil behavior/soil structure interaction are discussed, and the final chapter takes a case study of a wind turbine and demonstrates how to carry out step by step calculations. Key features: New, important subject to the industry. Includes calculations and case studies. Accompanied by a website hosting software and data files. Design of Foundations for Offshore Wind Turbines is a must have reference for engineers within the renewable energy industry and is also a useful guide for graduate students in this area.




Fundamentals of Ocean Renewable Energy


Book Description

Fundamentals of Ocean Renewable Energy: Generating Electricity from the Sea presents the basic concepts of mechanics and introduces the various technical aspects of ocean renewable energy. Contents follow a logical sequence, starting with hydrodynamics and then separately examining each conversion technology, with special focus on tidal energy, offshore wind and wave energy, as well as current and ocean thermal energy conversion (OTEC). The authors explore key topics for resource characterization and optimization, such as monitoring and measurement methods and ocean modeling. They also discuss the sustainability, planning, integration and distribution challenges for the implementation of these technologies, including co-location with other systems. Finally, case studies of ocean energy sites and devices allow for a better understanding of how ocean energy conversion works in real-world settings. This book is an invaluable resource for students at graduate and senior undergraduate level engineering (ocean, mechanical, and civil) and oceanography with prior knowledge of fluid mechanics and mechanics of materials. - Presents the fundamental physics and theory behind ocean energy systems, covering both oceanographic and engineering aspects of ocean energy - Explores the most widely adopted conversion technologies, including tidal, wave, offshore wind, ocean thermal and currents




Dynamic Analysis of Offshore Structures


Book Description

Dynamic Analysis of Offshore Structures appraises offshore structures, particularly the major sources of uncertainty in the design process. The book explains the fundamentals of probabilistic processes, the theory or analysis of sea states, and the random-vibration approach to structural response. The text describes the hydrodynamics of water waves, wave forecasting, and the statistical parameters associated with sea-states. The investigator can use Morison's equation to calculate the impact of wave forces acting on slender members such as on lattice-type structures. Or he can employ the diffraction theory to calculate wave forces acting on large-diameter bodies such as concrete gravity-type structures. Other environmental forces he should be concerned with are the effects of currents and winds. The book examines the theory of vibration (including the spectral approach), the theory of vibration on multi-degree-of-freedom structures, matrix analysis of structural response, problems of fatigue, and soil-structure interaction. The book notes the importance of the method of analysis used, with emphasis on the following: dynamic analysis, frequency domain, and linearization of drag. Two types of analysis follow linearization of drag: deterministic analysis (applied in a series of design waves which uses the long-term exceedance diagram for fatigue); or probabilistic analysis (used to study the behavior of the structure during the extreme design storm and its long term behavior for a range of sea states). The book can prove useful for structural, civil, or maritime engineers, as well as for students in one-year courses in offshore structure analysis at the postgraduate or final-year undergraduate level.




Dynamic Analysis and Design of Offshore Structures


Book Description

This book introduces readers to various types of offshore platform geometries. It addresses the various environmental loads encountered by these structures, and provides detailed descriptions of the fundamentals of structural dynamics in a classroom style, helping readers estimate damping in offshore structures and grasp these aspects’ applications in preliminary analysis and design. Basic concepts of structural dynamics are emphasized through simple illustrative examples and exercises. Design methodologies and guidelines, which are FORM based concepts, are explained through a selection of applied sample structures. Each chapter also features tutorials and exercises for self-learning. A dedicated chapter on stochastic dynamics helps students to extend the basic concepts of structural dynamics to this advanced domain of research. Hydrodynamic response of offshore structures with perforated members is one of the most recent research applications, and has proven to be one of the most effective means of retrofitting offshore structures. In addition, the book integrates the concepts of structural dynamics with the FORM-evolved design of offshore structures, offering a unique approach. This new edition is divided into seven chapters, each of which has been updated. Each chapter also includes a section on frequently asked Questions and Answers (Q&A), which enhances understanding of this complex subject through easy and self-explanatory text. Furthermore, the book presents valuable content with respect to new and recent research carried out by the author in structural dynamics. All numeric examples have been re-checked with more additional explanations. New exercises have been added to improve understanding of the subject matter. Computer coding is also included (wherever possible) to aid computer-based learning of the contents of the book. The book can serve as a textbook for senior undergraduate and graduate courses in civil, structural, applied mechanics, mechanical, aerospace, naval architecture and ocean engineering programs. The book can also serve as a text for professional learning and development programs or as a guide for practicing and consulting offshore structural engineers. The contents of this book will be useful to graduate students, researchers, and professionals alike.




Dynamics of Offshore Structures


Book Description

Dynamics of Offshore Structures provides an integrated treatment of the main subject areas that contribute to the design, construction, installation, and operation of fixed and floating offshore structures. The book begins with an overview of offshore oil and gas development and offshore structures. Separate chapters follow on the ocean environment; basic fluid mechanics; gravity wave theories; fluid loading on offshore structures; hydrostatics and dynamic response of floating bodies; and model testing of offshore structures. This book is prepared with particular emphasis on the fundamentals of oceanography, basic fluid mechanics, wave theory, hydrodynamics, naval architecture, and structural analysis to meet the needs of students reading ocean engineering or naval architecture, at both undergraduate and postgraduate levels. Basic equations and theoretical results are derived in a rigorous manner but sections on model testing, full-scale measurements, design, and certification are also induced to ensure that the book is of value to professional engineers seeking a balanced treatment of fundamental and practical issues.