Fundamentals of Petrophysics


Book Description

In this book, the fundamental knowledge involved in petroleum & gas development engineering, such as physical and chemical phenomena, physical processes and the relationship between physical factors is covered. It is arranged into 3 Sections. Section 1 including chapter 1-4 is to introduce the properties of fluids (gases, hydrocarbon liquids, and aqueous solutions). Section II including Chapter 5-7 is to introduce the porous rock properties of reservoir rocks. Section III including Chapter 8-10 is to introduce the mechanism of multiphase fluid flow in porous medium. The book is written primarily to serve professionals working in the petroleum engineering field. It can also be used as reference book for postgraduate and undergraduate students as well for the related oil fields in petroleum geology, oil production engineering, reservoir engineering and enhancing oil recovery.




Fundamentals of the Petrophysics of Oil and Gas Reservoirs


Book Description

Written by some of the world's most renowned petroleum and environmental engineers, Fundamentals of the Petrophysics of Oil and Gas Reservoirs is the first book to offer the practicing engineer and engineering student these new cutting-edge techniques for prediction and forecasting in petroleum engineering and environmental management. In this book, the authors combine a rigorous, yet easy to understand, approach to petrophysics and how it is applied to petroleum and environmental engineering to solve multiple problems that the engineer or geologist faces every day. Useful in the prediction of everything from crude oil composition, pore size distribution in reservoir rocks, groundwater contamination, and other types of forecasting, this approach provides engineers and students alike with a convenient guide to many real-world applications. Petroleum geologists and engineers must have a working knowledge of petrophysics in order to find oil reservoirs and devise the best plan for getting it out of the ground, before drilling can begin. This book offers the engineer and geologist a fundamental guide for accomplishing these goals, providing much-needed calculations and formulas on fluid flow, rock properties, and many other topics that are encountered every day. The approach taken in Fundamentals of the Petrophysics of Oil and Gas Reservoirs is unique and has not been addressed until now in book format. Readers now have the ability to review the historic development of relationships and equations to define critical petrophysics attributes, many of which have either never been covered in the literature on petrophysics. Useful for the veteran engineer or scientist and the student alike, this book is a must-have for any geologist, engineer, or student working in the field of upstream petroleum engineering.




Fundamentals of Petrophysics


Book Description




Physical Properties of Rocks


Book Description

A symbiosis of a brief description of physical fundamentals of the rock properties (based on typical experimental results and relevant theories and models) with a guide for practical use of different theoretical concepts.




Fundamentals of Reservoir Rock Properties


Book Description

This book explains the basic technologies, concepts, approaches, and terms used in relation to reservoir rocks. Accessible to engineers in varying roles, it provides the tools necessary for building reservoir characterization and simulation models that improve resource definition and recovery, even in complex depositional environments. The book is enriched with numerous examples from a wide variety of applications, to help readers understand the topics. It also describes in detail the key relationships between the different rock properties and their variables. As such, it is of interest to researchers, engineers, lab technicians, and postgraduate students in the field of petroleum engineering.




Practical Petrophysics


Book Description

Practical Petrophysics looks at both the principles and practice of petrophysics in understanding petroleum reservoirs. It concentrates on the tools and techniques in everyday use, and addresses all types of reservoirs, including unconventionals. The book provides useful explanations on how to perform fit for purpose interpretations of petrophysical data, with emphasis on what the interpreter needs and what is practically possible with real data. Readers are not limited to static reservoir properties for input to volumetrics, as the book also includes applications such as reservoir performance, seismic attribute, geo-mechanics, source rock characterization, and more. Principles and practice are given equal emphasis Simple models and concepts explain the underlying principles Extensive use of contemporary, real-life examples




Fundamentals of the Petrophysics of Oil and Gas Reservoirs


Book Description

Written by some of the world's most renowned petroleum and environmental engineers, Fundamentals of the Petrophysics of Oil and Gas Reservoirs is the first book to offer the practicing engineer and engineering student these new cutting-edge techniques for prediction and forecasting in petroleum engineering and environmental management. In this book, the authors combine a rigorous, yet easy to understand, approach to petrophysics and how it is applied to petroleum and environmental engineering to solve multiple problems that the engineer or geologist faces every day. Useful in the prediction of everything from crude oil composition, pore size distribution in reservoir rocks, groundwater contamination, and other types of forecasting, this approach provides engineers and students alike with a convenient guide to many real-world applications. Petroleum geologists and engineers must have a working knowledge of petrophysics in order to find oil reservoirs and devise the best plan for getting it out of the ground, before drilling can begin. This book offers the engineer and geologist a fundamental guide for accomplishing these goals, providing much-needed calculations and formulas on fluid flow, rock properties, and many other topics that are encountered every day. The approach taken in Fundamentals of the Petrophysics of Oil and Gas Reservoirs is unique and has not been addressed until now in book format. Readers now have the ability to review the historic development of relationships and equations to define critical petrophysics attributes, many of which have either never been covered in the literature on petrophysics. Useful for the veteran engineer or scientist and the student alike, this book is a must-have for any geologist, engineer, or student working in the field of upstream petroleum engineering.




Petrophysics


Book Description

The petroleum geologist and engineer must have a working knowledge of petrophysics in order to find oil reservoirs, devise the best plan for getting it out of the ground, then start drilling. This book offers the engineer and geologist a manual to accomplish these goals, providing much-needed calculations and formulas on fluid flow, rock properties, and many other topics that are encountered every day. New updated material covers topics that have emerged in the petrochemical industry since 1997. Contains information and calculations that the engineer or geologist must use in daily activities to find oil and devise a plan to get it out of the ground Filled with problems and solutions, perfect for use in undergraduate, graduate, or professional courses Covers real-life problems and cases for the practicing engineer




Principles of Mathematical Petrophysics


Book Description

The pioneering work of Gus Archie moved log interpretation into log analysis with the introduction of the equation that bears his name. Subsequent developments have mixed empiricism, physics, mathematical algorithms, and geological or engineering models as methods applied to petrophysical measurements in boreholes all over the world. Principles of Mathematical Petrophysics reviews the application of mathematics to petrophysics in a format that crystallizes the subject as a subdiscipline appropriate for the workstations of today. The subject matter is of wide interest to both academic and industrial professionals who work with subsurface data applied to energy, hydrology, and environmental issues. This book is the first of its kind, in that it addresses mathematical petrophysics as a distinct discipline. Other books in petrophysics are either extensive descriptions of tool design or interpretation techniques, typically in an ad hoc treatment. It covers mathematical methods that are applied to borehole and core petrophysical measurements to estimate rock properties of fluid saturation, pore types, permeability, mineralogy, facies, and reservoir characterization. These methods are demonstrated by a variety of case studies and summaries of applications. Principles of Mathematical Petrophysics is an invaluable resource for all people working with data related to petrophysics.