Fundamentals of Probability: A First Course


Book Description

Probability theory is one branch of mathematics that is simultaneously deep and immediately applicable in diverse areas of human endeavor. It is as fundamental as calculus. Calculus explains the external world, and probability theory helps predict a lot of it. In addition, problems in probability theory have an innate appeal, and the answers are often structured and strikingly beautiful. A solid background in probability theory and probability models will become increasingly more useful in the twenty-?rst century, as dif?cult new problems emerge, that will require more sophisticated models and analysis. Thisisa text onthe fundamentalsof thetheoryofprobabilityat anundergraduate or ?rst-year graduate level for students in science, engineering,and economics. The only mathematical background required is knowledge of univariate and multiva- ate calculus and basic linear algebra. The book covers all of the standard topics in basic probability, such as combinatorial probability, discrete and continuous distributions, moment generating functions, fundamental probability inequalities, the central limit theorem, and joint and conditional distributions of discrete and continuous random variables. But it also has some unique features and a forwa- looking feel.




Introduction to Probability


Book Description

This classroom-tested textbook is an introduction to probability theory, with the right balance between mathematical precision, probabilistic intuition, and concrete applications. Introduction to Probability covers the material precisely, while avoiding excessive technical details. After introducing the basic vocabulary of randomness, including events, probabilities, and random variables, the text offers the reader a first glimpse of the major theorems of the subject: the law of large numbers and the central limit theorem. The important probability distributions are introduced organically as they arise from applications. The discrete and continuous sides of probability are treated together to emphasize their similarities. Intended for students with a calculus background, the text teaches not only the nuts and bolts of probability theory and how to solve specific problems, but also why the methods of solution work.







Introduction to Probability


Book Description

An intuitive, yet precise introduction to probability theory, stochastic processes, statistical inference, and probabilistic models used in science, engineering, economics, and related fields. This is the currently used textbook for an introductory probability course at the Massachusetts Institute of Technology, attended by a large number of undergraduate and graduate students, and for a leading online class on the subject. The book covers the fundamentals of probability theory (probabilistic models, discrete and continuous random variables, multiple random variables, and limit theorems), which are typically part of a first course on the subject. It also contains a number of more advanced topics, including transforms, sums of random variables, a fairly detailed introduction to Bernoulli, Poisson, and Markov processes, Bayesian inference, and an introduction to classical statistics. The book strikes a balance between simplicity in exposition and sophistication in analytical reasoning. Some of the more mathematically rigorous analysis is explained intuitively in the main text, and then developed in detail (at the level of advanced calculus) in the numerous solved theoretical problems.




Introduction to Probability


Book Description

Developed from celebrated Harvard statistics lectures, Introduction to Probability provides essential language and tools for understanding statistics, randomness, and uncertainty. The book explores a wide variety of applications and examples, ranging from coincidences and paradoxes to Google PageRank and Markov chain Monte Carlo (MCMC). Additional application areas explored include genetics, medicine, computer science, and information theory. The print book version includes a code that provides free access to an eBook version. The authors present the material in an accessible style and motivate concepts using real-world examples. Throughout, they use stories to uncover connections between the fundamental distributions in statistics and conditioning to reduce complicated problems to manageable pieces. The book includes many intuitive explanations, diagrams, and practice problems. Each chapter ends with a section showing how to perform relevant simulations and calculations in R, a free statistical software environment.




A Modern Introduction to Probability and Statistics


Book Description

Suitable for self study Use real examples and real data sets that will be familiar to the audience Introduction to the bootstrap is included – this is a modern method missing in many other books




A First Look at Rigorous Probability Theory


Book Description

Features an introduction to probability theory using measure theory. This work provides proofs of the essential introductory results and presents the measure theory and mathematical details in terms of intuitive probabilistic concepts, rather than as separate, imposing subjects.




Random Phenomena


Book Description

Many of the problems that engineers face involve randomly varying phenomena of one sort or another. However, if characterized properly, even such randomness and the resulting uncertainty are subject to rigorous mathematical analysis. Taking into account the uniquely multidisciplinary demands of 21st-century science and engineering, Random Phenomena: Fundamentals of Probability and Statistics for Engineers provides students with a working knowledge of how to solve engineering problems that involve randomly varying phenomena. Basing his approach on the principle of theoretical foundations before application, Dr. Ogunnaike presents a classroom-tested course of study that explains how to master and use probability and statistics appropriately to deal with uncertainty in standard problems and those that are new and unfamiliar. Giving students the tools and confidence to formulate practical solutions to problems, this book offers many useful features, including: Unique case studies to illustrate the fundamentals and applications of probability and foster understanding of the random variable and its distribution Examples of development, selection, and analysis of probability models for specific random variables Presentation of core concepts and ideas behind statistics and design of experiments Selected "special topics," including reliability and life testing, quality assurance and control, and multivariate analysis As classic scientific boundaries continue to be restructured, the use of engineering is spilling over into more non-traditional areas, ranging from molecular biology to finance. This book emphasizes fundamentals and a "first principles" approach to deal with this evolution. It illustrates theory with practical examples and case studies, equipping readers to deal with a wide range of problems beyond those in the book. About the Author: Professor Ogunnaike is Interim Dean of Engineering at the University of Delaware. He is the recipient of the 2008 American Automatic Control Council's Control Engineering Practice Award, the ISA's Donald P. Eckman Education Award, the Slocomb Excellence in Teaching Award, and was elected into the US National Academy of Engineering in 2012.




Fundamentals of Probability


Book Description

"The 4th edition of Ghahramani's book is replete with intriguing historical notes, insightful comments, and well-selected examples/exercises that, together, capture much of the essence of probability. Along with its Companion Website, the book is suitable as a primary resource for a first course in probability. Moreover, it has sufficient material for a sequel course introducing stochastic processes and stochastic simulation." --Nawaf Bou-Rabee, Associate Professor of Mathematics, Rutgers University Camden, USA "This book is an excellent primer on probability, with an incisive exposition to stochastic processes included as well. The flow of the text aids its readability, and the book is indeed a treasure trove of set and solved problems. Every sub-topic within a chapter is supplemented by a comprehensive list of exercises, accompanied frequently by self-quizzes, while each chapter ends with a useful summary and another rich collection of review problems." --Dalia Chakrabarty, Department of Mathematical Sciences, Loughborough University, UK "This textbook provides a thorough and rigorous treatment of fundamental probability, including both discrete and continuous cases. The book’s ample collection of exercises gives instructors and students a great deal of practice and tools to sharpen their understanding. Because the definitions, theorems, and examples are clearly labeled and easy to find, this book is not only a great course accompaniment, but an invaluable reference." --Joshua Stangle, Assistant Professor of Mathematics, University of Wisconsin – Superior, USA This one- or two-term calculus-based basic probability text is written for majors in mathematics, physical sciences, engineering, statistics, actuarial science, business and finance, operations research, and computer science. It presents probability in a natural way: through interesting and instructive examples and exercises that motivate the theory, definitions, theorems, and methodology. This book is mathematically rigorous and, at the same time, closely matches the historical development of probability. Whenever appropriate, historical remarks are included, and the 2096 examples and exercises have been carefully designed to arouse curiosity and hence encourage students to delve into the theory with enthusiasm. New to the Fourth Edition: 538 new examples and exercises have been added, almost all of which are of applied nature in realistic contexts Self-quizzes at the end of each section and self-tests at the end of each chapter allow students to check their comprehension of the material An all-new Companion Website includes additional examples, complementary topics not covered in the previous editions, and applications for more in-depth studies, as well as a test bank and figure slides. It also includes complete solutions to all self-test and self-quiz problems Saeed Ghahramani is Professor of Mathematics and Dean of the College of Arts and Sciences at Western New England University. He received his Ph.D. from the University of California at Berkeley in Mathematics and is a recipient of teaching awards from Johns Hopkins University and Towson University. His research focuses on applied probability, stochastic processes, and queuing theory.




Probability for Statistics and Machine Learning


Book Description

This book provides a versatile and lucid treatment of classic as well as modern probability theory, while integrating them with core topics in statistical theory and also some key tools in machine learning. It is written in an extremely accessible style, with elaborate motivating discussions and numerous worked out examples and exercises. The book has 20 chapters on a wide range of topics, 423 worked out examples, and 808 exercises. It is unique in its unification of probability and statistics, its coverage and its superb exercise sets, detailed bibliography, and in its substantive treatment of many topics of current importance. This book can be used as a text for a year long graduate course in statistics, computer science, or mathematics, for self-study, and as an invaluable research reference on probabiliity and its applications. Particularly worth mentioning are the treatments of distribution theory, asymptotics, simulation and Markov Chain Monte Carlo, Markov chains and martingales, Gaussian processes, VC theory, probability metrics, large deviations, bootstrap, the EM algorithm, confidence intervals, maximum likelihood and Bayes estimates, exponential families, kernels, and Hilbert spaces, and a self contained complete review of univariate probability.