Ultrasonic Testing of Materials


Book Description

The amendments of this third English edition with respect to the second one concern beside some printing errors the replacement of some pictures in part D by more modern ones and updating the list of stand ards to the state of the fourth German edition. J OSEF KRAUTKRÄMER Cologne, January 1983 Preface to the Second Edition This seeond English edition is based on the third German edition. In view of most recent teehnologieal advanees it has beeome neeessary in many instanees to supplement the seeond German edition and to revise some parts completely. In addition to piezo-eleetric methods, others are now also extensively diseussed in Chapter 8. As for the intensity method, ultrasonie holo graphy is treated in the new Seetion 9. 4. In Part B, for reasons of syste maties, the resonanee method has been ineluded under transit-time methods. It appeared neeessary to elaborate in greater detail the defini tion of the properties of pulse-echo testing equipment and their measure ments (10. 4). The more recent findings of pulse speetroscopy (5. 6) and sound-emission analysis (12) are mentioned only in passing because their significanee is still controversial. Apart from numerous additions, partieularly those coneerning automatie testing installations, Part C also eontains a new chapter whieh deals with tests on nu eIe ar reactors (28), as weIl as abrief diseussion of surfaee-hardness tests (32. 4). It beeame impossible to include a critieal analysis of the principal standards in Chapter 33.




Industrial Ultrasonic Inspection: Levels 1 and 2


Book Description

Ultrasonic testing (UT) has been an accepted practice of inspection in industrial environments for decades. This book, Industrial Ultrasonic Inspection, is designed to meet and exceed ISO 9712 training requirements for Level 1 and Level 2 certification. The material presented in this book will provide readers with all the basic knowledge of the theory behind elastic wave propagation and its uses with the use of easy to read text and clear pictorial descriptions. Discussed UT concepts include: - General engineering, materials, and components theory - Theory of sound waves and their propagation - The general uses of ultrasonic waves - Comprehensive lab section - Methods of ultrasonic wave generation - Different ultrasonic inspection techniques - Ultrasonic flaw detectors, scanning systems, and probes - Calibration fundamentals - General scanning techniques - Flaw sizing techniques - Basic analysis for ultrasonic, phased array ultrasonic, and time of flight diffraction inspection techniques - Codes and standards - Principles of technical documentation and reporting It is my intention that this book is used for general training purposes. It is the ideal classroom textbook. -Ryan Chaplin




Fundamentals of Ultrasonic Testing


Book Description

Focusing on the theory and state-of-the-art technologies of ultrasonic testing (UT), this book examines ultrasonic propagation in solids and its detection applications, and explores the intersection of UT technology with various fields of electromagnetics, optics and physics. UT is one of the most widely used nondestructive testing techniques due to its high performance in terms of detection efficiency and safety. The rapid development of modern industrial products and technologies has created a new challenge and demand for ultrasonic nondestructive testing technology. This book introduces the fundamentals of UT, including sound wave and sound field, interface wave theory and liquid-solid coupled sound field. It then discusses various types of UT methods, ranging from the critically refracted longitudinal wave method to ultrasonic surface wave and ultrasonic guided wave detection methods. Some newly developed UT techniques are also discussed, including phased-array UT, high-frequency UT and non-contact UT. This title will appeal to engineering students and technicians in the field of ultrasonic nondestructive testing.




Fundamentals of Ultrasonic Phased Arrays


Book Description

This book describes in detail the physical and mathematical foundations of ultrasonic phased array measurements. The book uses linear systems theory to develop a comprehensive model of the signals and images that can be formed with phased arrays. Engineers working in the field of ultrasonic nondestructive evaluation (NDE) will find in this approach a wealth of information on how to design, optimize and interpret ultrasonic inspections with phased arrays. The fundamentals and models described in the book will also be of significant interest to other fields, including the medical ultrasound and seismology communities. A unique feature of this book is that it presents a unified theory of imaging with phased arrays that shows how common imaging methods such as the synthetic aperture focusing technique (SAFT), the total focusing method (TFM), and the physical optics far field inverse scattering (POFFIS) imaging method are all simplified versions of more fundamental and quantitative imaging approaches, called imaging measurement models. To enhance learning, this book first describes the fundamentals of phased array systems using 2-D models, so that the complex 3-D cases normally found in practice can be more easily understood. In addition to giving a detailed discussion of phased array systems, Fundamentals of Ultrasonic Phased Arrays also provides MATLAB® functions and scripts, allowing the reader to conduct simulations of ultrasonic phased array transducers and phased array systems with the latest modeling technology.




Ultrasonic Nondestructive Testing of Materials


Book Description

This book features a comprehensive discussion of the mathematical foundations of ultrasonic nondestructive testing of materials. The authors include a brief description of the theory of acoustic and electromagnetic fields to underline the similarities and differences with respect to elastodynamics. They also cover vector, elastic plane, and Rayleigh surface waves as well as ultrasonic beams, inverse scattering, and ultrasonic nondestructive imaging. A coordinate-free notation system is used that is easier to understand and navigate than standard index notation.




Ultrasonic Testing of Materials


Book Description

This second English edition is based on the third German edition. In view of most recent technological advances it has become necessary in many instances to supplement the second German edition and to revise some parts completely. In addition to piezo-electric methods, others are now also extensively discussed in Chapter 8. As for the intensity method, ultrasonic holo graphy is treated in the new Section 9. 4. In Part B, for reasons of syste matics, the resonance method has been included under transit-time methods. It appeared necessary to elaborate in greater detail the defini tion of the properties of pulse-echo testing equipment and their measure ments (10. 4). The more recent findings of pulse spectroscopy (5. 6) and sound-emission analysis (12) are mentioned only in passing because their significance is still controversial. Apart from numerous additions, particularly those concerning automatic testing installations, Part C also contains a new chapter which deals with tests on nuclear reactors (28), as well as a brief discussion of surface-hardness tests (32. 4). It became impossible to include a critical analysis of the principal standards in Chapter 33. A few are mentioned, however, where the most important subjects (e. g. , the testing of welded joints in Chapter 26) are discussed, while others are only tabulated in Chapter 33. The present, vastly increased literature made bibliographical selection rather difficult. Consequently, we wish to apologize to any authors whose reports may have been omitted because of limitations governing the size of this volume.







Ultrasonic Inspection Technology Development and Search Unit Design


Book Description

Ultrasonic testing is a relatively new branch of science and industry. The development of ultrasonic testing started in the late 1920s. At the beginning, the fundamentals of this method were borrowed from basic physics, geometrical and wave optics, acoustics and seismology. Later it became clear that some of these theories and calculation methods could not always explain the phenomena observed in many specific cases of ultrasonic testing. Without knowing the nuances of the ultrasonic wave propagation in the test object it is impossible to design effective inspection technique and search units for it realization. This book clarifies the theoretical differences of ultrasonics from the other wave propagation theories presenting both basics of physics in the wave propagation, elementary mathematic and advanced practical applications. Almost every specific technique presented in this book is proofed by actual experimental data and examples of calculations.




Ultrasonic and Advanced Methods for Nondestructive Testing and Material Characterization


Book Description

Ultrasonic methods have been very popular in nondestructive testing and characterization of materials. This book deals with both industrial ultrasound and medical ultrasound. The advantages of ultrasound include flexibility, low cost, in-line operation, and providing data in both signal and image formats for further analysis. The book devotes 11 chapters to ultrasonic methods. However, ultrasonic methods can be much less effective with some applications. So the book also has 14 chapters catering to other or advanced methods for nondestructive testing or material characterization. Topics like structural health monitoring, Terahertz methods, X-ray and thermography methods are presented. Besides different sensors for nondestructive testing, the book places much emphasis on signal/image processing and pattern recognition of the signals acquired.




Ultrasonics


Book Description

Recent advances in power electronics greatly benefit the multidisciplinary field of modern ultrasonics. More powerful, compact, and versatile electronic chips and software enable new computer-based devices for real-time data capture, storage, analysis, and display and advance the science and technology employed in commercial systems and applications of ultrasound. Reviewing the scientific basis behind these improvements, Ultrasonics: Fundamentals, Technologies, and Applications, Third Edition discusses them in detail, with new and additional figures and references, offering a completely revised and expanded examination of the state of modern ultrasonics. This new edition of a bestselling industry reference discusses the full breadth of ultrasonics applications for industrial and medical use and provides the fundamentals and insights gathered over the authors’ collective 80 years in the field. It provides a unique and comprehensive treatment of the science and technology behind the latest advancements and applications in both low and high power implementations. Coverage combines fundamental physics, a review and analysis of sensors and transducers, and the systems required for the full spectrum of industrial, nondestructive testing and medical and biomedical uses. It includes citations of numerous references and covers both main stream and the more unusual and obscure applications of ultrasound. Ultrasonics is ubiquitous in its industrial applications for sensing, NDT, and process measurements, in high power forms for processing and sonochemistry, as well as in medical procedures where it is used for diagnosis, therapy and surgery. This book provides a complete overview of the field, presenting numerous applications, cutting-edge advancements and improvements, additional figures and references, and a look at future directions.