Future Propulsion Systems and Energy Sources in Sustainable Aviation


Book Description

A comprehensive review of the science and engineering behind future propulsion systems and energy sources in sustainable aviation Future Propulsion Systems and Energy Sources in Sustainable Aviation is a comprehensive reference that offers a review of the science and engineering principles that underpin the concepts of propulsion systems and energy sources in sustainable air transportation. The author, a noted expert in the field, examines the impact of air transportation on the environment and reviews alternative jet fuels, hybrid-electric and nuclear propulsion and power. He also explores modern propulsion for transonic and supersonic-hypersonic aircraft and the impact of propulsion on aircraft design. Climate change is the main driver for the new technology development in sustainable air transportation. The book contains critical review of gas turbine propulsion and aircraft aerodynamics; followed by an insightful presentation of the aviation impact on environment. Future fuels and energy sources are introduced in a separate chapter. Promising technologies in propulsion and energy sources are identified leading to pathways to sustainable aviation. To facilitate the utility of the subject, the book is accompanied by a website that contains illustrations, and equation files. This important book: Contains a comprehensive reference to the science and engineering behind propulsion and power in sustainable air transportation Examines the impact of air transportation on the environment Covers alternative jet fuels and hybrid-electric propulsion and power Discusses modern propulsion for transonic, supersonic and hypersonic aircraft Examines the impact of propulsion system integration on aircraft design Written for engineers, graduate and senior undergraduate students in mechanical and aerospace engineering, Future Propulsion Systems and Energy Sources in Sustainable Aviation explores the future of aviation with a guide to sustainable air transportation that includes alternative jet fuels, hybrid-electric propulsion, all-electric and nuclear propulsion.




Commercial Aircraft Propulsion and Energy Systems Research


Book Description

The primary human activities that release carbon dioxide (CO2) into the atmosphere are the combustion of fossil fuels (coal, natural gas, and oil) to generate electricity, the provision of energy for transportation, and as a consequence of some industrial processes. Although aviation CO2 emissions only make up approximately 2.0 to 2.5 percent of total global annual CO2 emissions, research to reduce CO2 emissions is urgent because (1) such reductions may be legislated even as commercial air travel grows, (2) because it takes new technology a long time to propagate into and through the aviation fleet, and (3) because of the ongoing impact of global CO2 emissions. Commercial Aircraft Propulsion and Energy Systems Research develops a national research agenda for reducing CO2 emissions from commercial aviation. This report focuses on propulsion and energy technologies for reducing carbon emissions from large, commercial aircraftâ€" single-aisle and twin-aisle aircraft that carry 100 or more passengersâ€"because such aircraft account for more than 90 percent of global emissions from commercial aircraft. Moreover, while smaller aircraft also emit CO2, they make only a minor contribution to global emissions, and many technologies that reduce CO2 emissions for large aircraft also apply to smaller aircraft. As commercial aviation continues to grow in terms of revenue-passenger miles and cargo ton miles, CO2 emissions are expected to increase. To reduce the contribution of aviation to climate change, it is essential to improve the effectiveness of ongoing efforts to reduce emissions and initiate research into new approaches.




Sustainable Aviation


Book Description

This book analyses from a management perspective how the aviation industry can achieve a sustainability transformation in order to reach the Paris climate targets for 2050 and provides various strategic and operational recommendations in this regard. It examines various elements of the aviation system exhaustively, including technologies, consumers, airlines, airports and policies, from both short- and long-term standpoints. Specific questions and contradictions, as well as concrete options for taking action, are presented. It also includes numerous practical case studies, which will help practitioners transfer the concepts into their everyday work. The book is aimed at a broad, professional audience consisting of managers, politicians and regulators, but also at advanced students engaged in academic and professional education.




Sustainable Aviation Technology and Operations


Book Description

Sustainable Aviation Technology and Operations Comprehensively covers research and development initiatives to enhance the environmental sustainability of the??aviation sector Sustainable Aviation Technology and Operations provides a comprehensive and timely outlook of recent research advances in aeronautics and air transport, with emphasis on both long-term sustainable development goals and current achievements. This book discusses some of the most promising advances in aircraft technologies, air traffic management and systems engineering methodologies for sustainable aviation. The topics covered include: propulsion, aerodynamics, avionics, structures, materials, airspace management, biofuels and sustainable lifecycle management. The physical processes associated with various aircraft emissions — including air pollutants, noise and contrails — are presented to support the development of computational models for aircraft design, flight path optimization and environmental impact assessment. Relevant advances in systems engineering and lifecycle management processes are also covered, bridging some of the existing gaps between academic research and industry best practices. A collection of research case studies complements the book, highlighting opportunities for a timely uptake of the most promising technologies, towards a more efficient and environmentally sustainable aviation future. Key features: Contains important research and industry relevant contributions from world-class experts. Addresses recent advances in aviation sustainability including multidisciplinary design approaches and multi-objective operational optimisation methods. Includes a number of research case studies, addressing propulsion, aerostructures, alternative aviation fuels, avionics, air traffic management, and sustainable lifecycle management solutions. Sustainable Aviation Technology and Operations is an excellent book for aerospace engineers, aviation scientists, researchers and graduate students involved in the field.




Sustainable Aviation


Book Description

This expansive reference on the use of clean energy technologies in the aviation industry focuses on tools and solutions for maximizing the energy efficiency of aircrafts, airports, and other auxiliary components of air transit. Key topics range from predicting impacts of avionics and control systems to energy/exergy performance analyses of flight mechanics and computational fluid dynamics. The book includes findings both from experimental investigations and functional extant systems, ranging from propulsion technologies for aerospace vehicles to airport design to energy recovery systems. Engineers, researchers and students will benefit from the broad reach and numerous engineering examples provided.




Aircraft Propulsion


Book Description

AIRCRAFT PROPULSION




Chemicals and Fuels from Biomass via Fischer–Tropsch Synthesis


Book Description

Integrating technological development and business development rationales to highlight the key technological developments that are necessary to industrialize biofuels on a global scale, this book focusses on the key challenges that still hinder the effective biomass use and the realization of zero fossil fuel.




Computational Modelling and Simulation of Aircraft and the Environment, Volume 2


Book Description

Computational Modelling and Simulation of Aircraft and the Environment An in-depth discussion of aircraft dynamics modelling and simulation This book provides a comprehensive guide to modelling and simulation from basic physical and mathematical principles, giving the reader sufficient information to be able to build computational models of aircraft for the purposes of simulation and evaluation. Highly relevant to practitioners, it takes into account the multi-disciplinary nature of aerospace products and the integrated nature of the models needed in order to represent them. Volume 1- Platform Kinematics and Synthetic Environment focused on the modelling of a synthetic environment in which aircraft operate and its spatial relationship with vehicles that are situated and moving within it. This volume focuses on the modelling of aircraft and the interpretation of their flight dynamics. Key features: Includes chapters on equations of motion, fixed-wing aerodynamics, longitudinal flight and gas turbines, as well as an opening chapter that presents an overview of flight modelling and a concluding chapter that presents a number of additional topics such as aircraft structures and embedded systems. Serves as both a student text and practitioner reference. Follows on from previous Aerospace Series titles, offering a complementary view of vehicles and systems from the perspectives of mathematics, physics and simulation. This book offers a comprehensive guide for senior, graduate and postgraduate students of aerospace engineering as well as professional engineers involved in the modelling and simulation of aircraft.




Sustainable Aviation


Book Description

This book provides readers with a basic understanding of the concepts and methodologies of sustainable aviation.The book is divided into three sections : basic principles the airport side, and the aircraft side. In-depth chapters discuss the key elements of sustainable aviation and provide complete coverage of essential topics including airport, energy, and noise management along with novel technologies, standards and a review of the current literature on green airports, sustainable aircraft design, biodiversity management, and alternative fuels. Engineers, researchers and students will find the fundamental approach useful and will benefit from the many engineering examples and solutions provided.




Foundations of Space Dynamics


Book Description

An introduction to orbital mechanics and spacecraft attitude dynamics Foundations of Space Dynamics offers an authoritative text that combines a comprehensive review of both orbital mechanics and dynamics. The authora noted expert in the fieldcovers up-to-date topics including: orbital perturbations, Lambert's transfer, formation flying, and gravity-gradient stabilization. The text provides an introduction to space dynamics in its entirety, including important analytical derivations and practical space flight examples. Written in an accessible and concise style, Foundations of Space Dynamics highlights analytical development and rigor, rather than numerical solutions via ready-made computer codes. To enhance learning, the book is filled with helpful tables, figures, exercises, and solved examples. This important book: Covers space dynamics with a systematic and comprehensive approach Is designed to be a practical text filled with real-world examples Contains information on the most current applications Includes up-to-date topics from orbital perturbations to gravity- gradient stabilization Offers a deep understanding of space dynamics often lacking in other textbooks Written for undergraduate and graduate students and professionals in aerospace engineering, Foundations of Space Dynamics offers an introduction to the most current information on orbital mechanics and dynamics.