Future Science Opportunities in Antarctica and the Southern Ocean


Book Description

Antarctica and the surrounding Southern Ocean remains one of the world's last frontiers. Covering nearly 14 million km (an area approximately 1.4 times the size of the United States), Antarctica is the coldest, driest, highest, and windiest continent on Earth. While it is challenging to live and work in this extreme environment, this region offers many opportunities for scientific research. Ever since the first humans set foot on Antarctica a little more than a century ago, the discoveries made there have advanced our scientific knowledge of the region, the world, and the Universe--but there is still much more to learn. However, conducting scientific research in the harsh environmental conditions of Antarctica is profoundly challenging. Substantial resources are needed to establish and maintain the infrastructure needed to provide heat, light, transportation, and drinking water, while at the same time minimizing pollution of the environment and ensuring the safety of researchers. "Future Science Opportunities in Antarctica and the Southern Ocean" suggests actions for the United States to achieve success for the next generation of Antarctic and Southern Ocean science. The report highlights important areas of research by encapsulating each into a single, overarching question. The questions fall into two broad themes: (1) those related to global change, and (2) those related to fundamental discoveries. In addition, the report identified key science questions that will drive research in Antarctica and the Southern Ocean in coming decades, and highlighted opportunities to be leveraged to sustain and improve the U.S. research efforts in the region."




Future Science Opportunities in Antarctica and the Southern Ocean


Book Description

Antarctica and the surrounding Southern Ocean remains one of the world's last frontiers. Covering nearly 14 million km² (an area approximately 1.4 times the size of the United States), Antarctica is the coldest, driest, highest, and windiest continent on Earth. While it is challenging to live and work in this extreme environment, this region offers many opportunities for scientific research. Ever since the first humans set foot on Antarctica a little more than a century ago, the discoveries made there have advanced our scientific knowledge of the region, the world, and the Universe-but there is still much more to learn. However, conducting scientific research in the harsh environmental conditions of Antarctica is profoundly challenging. Substantial resources are needed to establish and maintain the infrastructure needed to provide heat, light, transportation, and drinking water, while at the same time minimizing pollution of the environment and ensuring the safety of researchers. Future Science Opportunities in Antarctica and the Southern Ocean suggests actions for the United States to achieve success for the next generation of Antarctic and Southern Ocean science. The report highlights important areas of research by encapsulating each into a single, overarching question. The questions fall into two broad themes: (1) those related to global change, and (2) those related to fundamental discoveries. In addition, the report identified key science questions that will drive research in Antarctica and the Southern Ocean in coming decades, and highlighted opportunities to be leveraged to sustain and improve the U.S. research efforts in the region.




Antarctic Sea Ice Variability in the Southern Ocean-Climate System


Book Description

The sea ice surrounding Antarctica has increased in extent and concentration from the late 1970s, when satellite-based measurements began, until 2015. Although this increasing trend is modest, it is surprising given the overall warming of the global climate and the region. Indeed, climate models, which incorporate our best understanding of the processes affecting the region, generally simulate a decrease in sea ice. Moreover, sea ice in the Arctic has exhibited pronounced declines over the same period, consistent with global climate model simulations. For these reasons, the behavior of Antarctic sea ice has presented a conundrum for global climate change science. The National Academies of Sciences, Engineering, and Medicine held a workshop in January 2016, to bring together scientists with different sets of expertise and perspectives to further explore potential mechanisms driving the evolution of recent Antarctic sea ice variability and to discuss ways to advance understanding of Antarctic sea ice and its relationship to the broader ocean-climate system. This publication summarizes the presentations and discussions from the workshop.




Antarctic Climate Evolution


Book Description

Antarctic Climate Evolution is the first book dedicated to furthering knowledge on the evolution of the world's largest ice sheet over its ~34 million year history. This volume provides the latest information on subjects ranging from terrestrial and marine geology to sedimentology and glacier geophysics. - An overview of Antarctic climate change, analyzing historical, present-day and future developments - Contributions from leading experts and scholars from around the world - Informs and updates climate change scientists and experts in related areas of study




A Strategic Vision for NSF Investments in Antarctic and Southern Ocean Research


Book Description

Antarctic and Southern Ocean scientific research has produced a wide array of important and exciting scientific advances. Spanning oceanography to tectonics, microbiology to astrophysics, the extreme Antarctic environment provides unique opportunities to expand our knowledge about how our planet works and even the very origins of the universe. Research on the Southern Ocean and the Antarctic ice sheets is becoming increasingly urgent not only for understanding the future of the region but also its interconnections with and impacts on many other parts of the globe. The U.S. National Science Foundation (NSF) provides U.S. researchers with broad access to the continent and its surrounding ocean. A Strategic Vision for NSF Investments in Antarctic and Southern Ocean Research identifies priorities and strategic steps forward for Antarctic research and observations for the next decade. This survey presents a decadal vision for strategic investments in compelling research and the infrastructure most critical for supporting this research. This report makes recommendations for high-priority, larger-scale, community-driven research initiatives that address questions poised for significant advance with the next decades. This report also outlines a roadmap through which the vision and these priorities can be met.







Polar Icebreakers in a Changing World


Book Description

The United States has enduring national and strategic interests in the polar regions, including citizens living above the Arctic circle and three year-round scientific stations in the Antarctic. Polar icebreaking ships are needed to access both regions. Over the past several decades, the U.S. government has supported a fleet of four icebreakersâ€"three multi-mission U.S. Coast Guard ships (the POLAR SEA, POLAR STAR, and HEALY) and the National Science Foundation's PALMER, which is dedicated solely to scientific research. Today, the POLAR STAR and the POLAR SEA are at the end of their service lives, and a lack of funds and no plans for an extension of the program has put U.S. icebreaking capability at risk. This report concludes that the United States should continue to support its interests in the Arctic and Antarctic for multiple missions, including maintaining leadership in polar science. The report recommends that the United States immediately program, budget, design, and construct two new polar icebreakers to be operated by the U.S. Coast Guard. The POLAR SEA should remain mission capable and the POLAR STAR should remain available for reactivation until the new polar icebreakers enter service. The U.S. Coast Guard should be provided sufficient operations and maintenance budget to support an increased, regular, and influential presence in the Arctic, with support from other agencies. The report also calls for a Presidential Decision Directive to clearly align agency responsibilities and budgetary authorities.







Anthropocene Antarctica


Book Description

Anthropocene Antarctica offers new ways of thinking about the ‘Continent for Science and Peace’ in a time of planetary environmental change. In the Anthropocene, Antarctica has become central to the Earth’s future. Ice cores taken from its interior reveal the deep environmental history of the planet and warming ocean currents are ominously destabilising the glaciers around its edges, presaging sea-level rise in decades and centuries to come. At the same time, proliferating research stations and tourist numbers challenge stereotypes of the continent as the ‘last wilderness.’ The Anthropocene brings Antarctica nearer in thought, entangled with our everyday actions. If the Anthropocene signals the end of the idea of Nature as separate from humans, then the Antarctic, long considered the material embodiment of this idea, faces a radical reframing. Understanding the southern polar region in the twenty-first century requires contributions across the disciplinary spectrum. This collection paves the way for researchers in the Environmental Humanities, Law and Social Sciences to engage critically with the Antarctic, fostering a community of scholars who can act with natural scientists to address the globally significant environmental issues that face this vitally important part of the planet.




Critical Infrastructure for Ocean Research and Societal Needs in 2030


Book Description

The United States has jurisdiction over 3.4 million square miles of ocean in its exclusive economic zone, a size exceeding the combined land area of the 50 states. This expansive marine area represents a prime national domain for activities such as maritime transportation, national security, energy and mineral extraction, fisheries and aquaculture, and tourism and recreation. However, it also carries with it the threat of damaging and outbreaks of waterborne pathogens. The 2010 Gulf of Mexico Deepwater Horizon oil spill and the 2011 Japanese earthquake and tsunami are vivid reminders that ocean activities and processes have direct human implications both nationally and worldwide, understanding of the ocean system is still incomplete, and ocean research infrastructure is needed to support both fundamental research and societal priorities. Given current struggles to maintain, operate, and upgrade major infrastructure elements while maintaining a robust research portfolio, a strategic plan is needed for future investments to ensure that new facilities provide the greatest value, least redundancy, and highest efficiency in terms of operation and flexibility to incorporate new technological advances. Critical Infrastructure for Ocean Research and Societal Needs in 2030 identifies major research questions anticipated to be at the forefront of ocean science in 2030 based on national and international assessments, input from the worldwide scientific community, and ongoing research planning activities. This report defines categories of infrastructure that should be included in planning for the nation's ocean research infrastructure of 2030 and that will be required to answer the major research questions of the future. Critical Infrastructure for Ocean Research and Societal Needs in 2030 provides advice on the criteria and processes that could be used to set priorities for the development of new ocean infrastructure or replacement of existing facilities. In addition, this report recommends ways in which the federal agencies can maximize the value of investments in ocean infrastructure.