Fuzzy Logic and Mathematics


Book Description

The main part of the book is a comprehensive overview of the development of fuzzy logic and its applications in various areas of human affair since its genesis in the mid 1960s. This overview is then employed for assessing the significance of fuzzy logic and mathematics based on fuzzy logic.




Fuzzy Mathematics


Book Description

In the mid-1960's I had the pleasure of attending a talk by Lotfi Zadeh at which he presented some of his basic (and at the time, recent) work on fuzzy sets. Lotfi's algebra of fuzzy subsets of a set struck me as very nice; in fact, as a graduate student in the mid-1950's, I had suggested similar ideas about continuous-truth-valued propositional calculus (inffor "and", sup for "or") to my advisor, but he didn't go for it (and in fact, confused it with the foundations of probability theory), so I ended up writing a thesis in a more conventional area of mathematics (differential algebra). I especially enjoyed Lotfi's discussion of fuzzy convexity; I remember talking to him about possible ways of extending this work, but I didn't pursue this at the time. I have elsewhere told the story of how, when I saw C. L. Chang's 1968 paper on fuzzy topological spaces, I was impelled to try my hand at fuzzi fying algebra. This led to my 1971 paper "Fuzzy groups", which became the starting point of an entire literature on fuzzy algebraic structures. In 1974 King-Sun Fu invited me to speak at a U. S. -Japan seminar on Fuzzy Sets and their Applications, which was to be held that summer in Berkeley.




Fuzzy Models for Pattern Recognition


Book Description




Mathematics of Fuzzy Sets


Book Description

Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory is a major attempt to provide much-needed coherence for the mathematics of fuzzy sets. Much of this book is new material required to standardize this mathematics, making this volume a reference tool with broad appeal as well as a platform for future research. Fourteen chapters are organized into three parts: mathematical logic and foundations (Chapters 1-2), general topology (Chapters 3-10), and measure and probability theory (Chapters 11-14). Chapter 1 deals with non-classical logics and their syntactic and semantic foundations. Chapter 2 details the lattice-theoretic foundations of image and preimage powerset operators. Chapters 3 and 4 lay down the axiomatic and categorical foundations of general topology using lattice-valued mappings as a fundamental tool. Chapter 3 focuses on the fixed-basis case, including a convergence theory demonstrating the utility of the underlying axioms. Chapter 4 focuses on the more general variable-basis case, providing a categorical unification of locales, fixed-basis topological spaces, and variable-basis compactifications. Chapter 5 relates lattice-valued topologies to probabilistic topological spaces and fuzzy neighborhood spaces. Chapter 6 investigates the important role of separation axioms in lattice-valued topology from the perspective of space embedding and mapping extension problems, while Chapter 7 examines separation axioms from the perspective of Stone-Cech-compactification and Stone-representation theorems. Chapters 8 and 9 introduce the most important concepts and properties of uniformities, including the covering and entourage approaches and the basic theory of precompact or complete [0,1]-valued uniform spaces. Chapter 10 sets out the algebraic, topological, and uniform structures of the fundamentally important fuzzy real line and fuzzy unit interval. Chapter 11 lays the foundations of generalized measure theory and representation by Markov kernels. Chapter 12 develops the important theory of conditioning operators with applications to measure-free conditioning. Chapter 13 presents elements of pseudo-analysis with applications to the Hamilton–Jacobi equation and optimization problems. Chapter 14 surveys briefly the fundamentals of fuzzy random variables which are [0,1]-valued interpretations of random sets.




Mathematical Principles of Fuzzy Logic


Book Description

Mathematical Principles of Fuzzy Logic provides a systematic study of the formal theory of fuzzy logic. The book is based on logical formalism demonstrating that fuzzy logic is a well-developed logical theory. It includes the theory of functional systems in fuzzy logic, providing an explanation of what can be represented, and how, by formulas of fuzzy logic calculi. It also presents a more general interpretation of fuzzy logic within the environment of other proper categories of fuzzy sets stemming either from the topos theory, or even generalizing the latter. This book presents fuzzy logic as the mathematical theory of vagueness as well as the theory of commonsense human reasoning, based on the use of natural language, the distinguishing feature of which is the vagueness of its semantics.




Topological and Algebraic Structures in Fuzzy Sets


Book Description

Topological and Algebraic Structures in Fuzzy Sets has these unique features: -strategically located at the juncture of fuzzy sets, topology, algebra, lattices, foundations of mathematics; -major studies in uniformities and convergence structures, fundamental examples in lattice-valued topology, modifications and extensions of sobriety, categorical aspects of lattice-valued subsets, logic and foundations of mathematics, t-norms and associated algebraic and ordered structures; -internationally recognized authorities clarify deep mathematical aspects of fuzzy sets, particularly those topological or algebraic in nature; -comprehensive bibliographies and tutorial nature of longer chapters take readers to the frontier of each topic; -extensively referenced introduction unifies volume and guides readers to chapters closest to their interests; -annotated open questions direct future research in the mathematics of fuzzy sets; -suitable as a text for advanced graduate students.




Discrete Mathematical Structures


Book Description

Teaches students the mathematical foundations of computer science, including logic, Boolean algebra, basic graph theory, finite state machines, grammars and algorithms, and helps them understand mathematical reasoning for reading, comprehension and construction of mathematical arguments.




Fuzzy Sets in Decision Analysis, Operations Research and Statistics


Book Description

Fuzzy Sets in Decision Analysis, Operations Research and Statistics includes chapters on fuzzy preference modeling, multiple criteria analysis, ranking and sorting methods, group decision-making and fuzzy game theory. It also presents optimization techniques such as fuzzy linear and non-linear programming, applications to graph problems and fuzzy combinatorial methods such as fuzzy dynamic programming. In addition, the book also accounts for advances in fuzzy data analysis, fuzzy statistics, and applications to reliability analysis. These topics are covered within four parts: Decision Making, Mathematical Programming, Statistics and Data Analysis, and Reliability, Maintenance and Replacement. The scope and content of the book has resulted from multiple interactions between the editor of the volume, the series editors, the series advisory board, and experts in each chapter area. Each chapter was written by a well-known researcher on the topic and reviewed by other experts in the area. These expert reviewers sometimes became co-authors because of the extent of their contribution to the chapter. As a result, twenty-five authors from twelve countries and four continents were involved in the creation of the 13 chapters, which enhances the international character of the project and gives an idea of how carefully the Handbook has been developed.




Handbook of Research on Emerging Applications of Fuzzy Algebraic Structures


Book Description

In the world of mathematics, the study of fuzzy relations and its theories are well-documented and a staple in the area of calculative methods. What many researchers and scientists overlook is how fuzzy theory can be applied to industries outside of arithmetic. The framework of fuzzy logic is much broader than professionals realize. There is a lack of research on the full potential this theoretical model can reach. The Handbook of Research on Emerging Applications of Fuzzy Algebraic Structures provides emerging research exploring the theoretical and practical aspects of fuzzy set theory and its real-life applications within the fields of engineering and science. Featuring coverage on a broad range of topics such as complex systems, topological spaces, and linear transformations, this book is ideally designed for academicians, professionals, and students seeking current research on innovations in fuzzy logic in algebra and other matrices.