Fuzzy Engineering and Operations Research


Book Description

“Fuzzy Engineering and Operations Research” is the edited outcome of the 5th International Conference on Fuzzy Information and Engineering (ICFIE2011) held during Oct. 15-17, 2011 in Chengdu, China and by the 1st academic conference in establishment of Guangdong Province Operations Research Society (GDORSC) held on Oct. 20, 2011 in Guangzhou, China. The 5th ICFIE2011, built on the success of previous conferences, and the GDORC, first held, are major Symposiums, respectively, for scientists, engineers practitioners and Operation Research (OR) researchers presenting their updated results, developments and applications in all areas of fuzzy information and engineering and OR. It aims to strengthen relations between industry research laboratories and universities, and to create a primary symposium for world scientists in Fuzziology and OR fields. The book contains 62 papers and is divided into five main parts: “Fuzzy Optimization, Logic and Information”, “The mathematical Theory of Fuzzy Systems”, “Fuzzy Engineering Applications and Soft Computing Methods”, “OR and Fuzziology” and “Guess and Review”.




Fuzzy Engineering Expert Systems with Neural Network Applications


Book Description

Provides an up-to-date integration of expert systems with fuzzy logic and neural networks. Includes coverage of simulation models not present in other books. Presents cases and examples taken from the authors' experience in research and applying the technology to real-world situations.




Fuzzy Sets in Decision Analysis, Operations Research and Statistics


Book Description

Fuzzy Sets in Decision Analysis, Operations Research and Statistics includes chapters on fuzzy preference modeling, multiple criteria analysis, ranking and sorting methods, group decision-making and fuzzy game theory. It also presents optimization techniques such as fuzzy linear and non-linear programming, applications to graph problems and fuzzy combinatorial methods such as fuzzy dynamic programming. In addition, the book also accounts for advances in fuzzy data analysis, fuzzy statistics, and applications to reliability analysis. These topics are covered within four parts: Decision Making, Mathematical Programming, Statistics and Data Analysis, and Reliability, Maintenance and Replacement. The scope and content of the book has resulted from multiple interactions between the editor of the volume, the series editors, the series advisory board, and experts in each chapter area. Each chapter was written by a well-known researcher on the topic and reviewed by other experts in the area. These expert reviewers sometimes became co-authors because of the extent of their contribution to the chapter. As a result, twenty-five authors from twelve countries and four continents were involved in the creation of the 13 chapters, which enhances the international character of the project and gives an idea of how carefully the Handbook has been developed.




Fuzzy Sets, Decision Making, and Expert Systems


Book Description

In the two decades since its inception by L. Zadeh, the theory of fuzzy sets has matured into a wide-ranging collection of concepts, models, and tech niques for dealing with complex phenomena which do not lend themselves to analysis by classical methods based on probability theory and bivalent logic. Nevertheless, a question which is frequently raised by the skeptics is: Are there, in fact, any significant problem areas in which the use of the theory of fuzzy sets leads to results which could not be obtained by classical methods? The approximately 5000 publications in this area, which are scattered over many areas such as artificial intelligence, computer science, control engineering, decision making, logic, operations research, pattern recognition, robotics and others, provide an affirmative answer to this question. In spite of the large number of publications, good and comprehensive textbooks which could facilitate the access of newcomers to this area and support teaching were missing until recently. To help to close this gap and to provide a textbook for courses in fuzzy set theory which can also be used as an introduction to this field, the first volume ofthis book was published in 1985 [Zimmermann 1985 b]. This volume tried to cover fuzzy set theory and its applications as extensively as possible. Applications could, therefore, only be described to a limited extent and not very detailed.




Advanced Fuzzy Logic Approaches in Engineering Science


Book Description

Fuzzy logic techniques have had extraordinary growth in various engineering systems. The developments in engineering sciences have caused apprehension in modern years due to high-tech industrial processes with ever-increasing levels of complexity. Advanced Fuzzy Logic Approaches in Engineering Science provides innovative insights into a comprehensive range of soft fuzzy logic techniques applied in various fields of engineering problems like fuzzy sets theory, adaptive neuro fuzzy inference system, and hybrid fuzzy logic genetic algorithms belief networks in industrial and engineering settings. The content within this publication represents the work of particle swarms, fuzzy computing, and rough sets. It is a vital reference source for engineers, research scientists, academicians, and graduate-level students seeking coverage on topics centered on the applications of fuzzy logic in high-tech industrial processes.




Fuzzy Mathematics in Economics and Engineering


Book Description

The book aims at surveying results in the application of fuzzy sets and fuzzy logic to economics and engineering. New results include fuzzy non-linear regression, fully fuzzified linear programming, fuzzy multi-period control, fuzzy network analysis, each using an evolutionary algorithm; fuzzy queuing decision analysis using possibility theory; fuzzy differential equations; fuzzy difference equations; fuzzy partial differential equations; fuzzy eigenvalues based on an evolutionary algorithm; fuzzy hierarchical analysis using an evolutionary algorithm; fuzzy integral equations. Other important topics covered are fuzzy input-output analysis; fuzzy mathematics of finance; fuzzy PERT (project evaluation and review technique). No previous knowledge of fuzzy sets is needed. The mathematical background is assumed to be elementary calculus.




Fuzzy Engineering Economics with Applications


Book Description

Fuzzy set approaches are suitable to use when the modeling of human knowledge is necessary and when human evaluations are needed. Fuzzy set theory is recognized as an important problem modeling and solution technique. It has been studied ext- sively over the past 40 years. Most of the early interest in fuzzy set theory pertained to representing uncertainty in human cognitive processes. Fuzzy set theory is now - plied to problems in engineering, business, medical and related health sciences, and the natural sciences. This book handles the fuzzy cases of classical engineering e- nomics topics. It contains 15 original research and application chapters including different topics of fuzzy engineering economics. When no probabilities are available for states of nature, decisions are given under uncertainty. Fuzzy sets are a good tool for the operation research analyst facing unc- tainty and subjectivity. The main purpose of the first chapter is to present the role and importance of fuzzy sets in the economic decision making problem with the literature review of the most recent advances.




Fuzzy Information and Engineering


Book Description

The Second International Conference on Fuzzy Information and Engineering (ICFIE2007) is a major symposium for scientists, engineers and practitioners in China as well as the world to present their latest results, ideas, developments and applications in all areas of fuzzy information and knowledge engineering. It aims to strengthen relations between industry research laboratories and universities, and to create a primary symposium for world scientists.




Fuzzy TOPSIS


Book Description

This book aims to justify the use of fuzzy logic as a logic and as an uncertainty theory in the decision-making context. It also discusses the development of the TOPSIS method (Technique for Order of Preference by Similarity to Ideal Solution) with related examples and MATLAB codes. This is the first book devoted to TOPSIS and its fuzzy versions. It presents the use of fuzzy logic as a logic and as an uncertainty theory in the decision-making content and discusses the development of the TOPSIS method in classical and fuzzy context. The book justifies the use of fuzzy logic as an uncertainty theory and provides illustrative examples for each fuzzy TOPSIS extension, along with related MATLAB codes and case studies. This book is for industrial engineers, operations research engineers, systems engineers, and production engineers working in the areas of decision analysis, multi-criteria decision making, and multiple objective optimization.




Fuzzy Mathematical Models in Engineering and Management Science


Book Description

This work is by two of the leading researchers in the field of fuzzy set theory and fuzzy logic. It deals with the notions of fuzzy numbers with levels of perception and levels of presumption. Many new results, examples and novel applications in engineering and management science are presented. This approach makes the book interesting and easy to understand, and provides mathematical tools which readers may find useful in the study of their own problems. Of particular interest are the discussions of applications in areas employing zero-based budgeting, the Delphi method, critical path optimization, reliability modelling, filtering and transportation. The first section is devoted to the theoretical basis for these mathematical models. The second part deals with a variety of applications in engineering and management science. There are also seven appendices which contain some special mathematical operations (Minkowaski's operations) on fuzzy quantities and detailed biographical material.