Fuzzy Fractional Differential Operators and Equations


Book Description

This book contains new and useful materials concerning fuzzy fractional differential and integral operators and their relationship. As the title of the book suggests, the fuzzy subject matter is one of the most important tools discussed. Therefore, it begins by providing a brief but important and new description of fuzzy sets and the computational calculus they require. Fuzzy fractals and fractional operators have a broad range of applications in the engineering, medical and economic sciences. Although these operators have been addressed briefly in previous papers, this book represents the first comprehensive collection of all relevant explanations. Most of the real problems in the biological and engineering sciences involve dynamic models, which are defined by fuzzy fractional operators in the form of fuzzy fractional initial value problems. Another important goal of this book is to solve these systems and analyze their solutions both theoretically and numerically. Given the content covered, the book will benefit all researchers and students in the mathematical and computer sciences, but also the engineering sciences.




The Analysis of Fractional Differential Equations


Book Description

Fractional calculus was first developed by pure mathematicians in the middle of the 19th century. Some 100 years later, engineers and physicists have found applications for these concepts in their areas. However there has traditionally been little interaction between these two communities. In particular, typical mathematical works provide extensive findings on aspects with comparatively little significance in applications, and the engineering literature often lacks mathematical detail and precision. This book bridges the gap between the two communities. It concentrates on the class of fractional derivatives most important in applications, the Caputo operators, and provides a self-contained, thorough and mathematically rigorous study of their properties and of the corresponding differential equations. The text is a useful tool for mathematicians and researchers from the applied sciences alike. It can also be used as a basis for teaching graduate courses on fractional differential equations.




Fuzzy Differential Equations in Various Approaches


Book Description

This book may be used as reference for graduate students interested in fuzzy differential equations and researchers working in fuzzy sets and systems, dynamical systems, uncertainty analysis, and applications of uncertain dynamical systems. Beginning with a historical overview and introduction to fundamental notions of fuzzy sets, including different possibilities of fuzzy differentiation and metric spaces, this book moves on to an overview of fuzzy calculus thorough exposition and comparison of different approaches. Innovative theories of fuzzy calculus and fuzzy differential equations using fuzzy bunches of functions are introduced and explored. Launching with a brief review of essential theories, this book investigates both well-known and novel approaches in this field; such as the Hukuhara differentiability and its generalizations as well as differential inclusions and Zadeh’s extension. Through a unique analysis, results of all these theories are examined and compared.




Methods of Mathematical Modelling


Book Description

This book features original research articles on the topic of mathematical modelling and fractional differential equations. The contributions, written by leading researchers in the field, consist of chapters on classical and modern dynamical systems modelled by fractional differential equations in physics, engineering, signal processing, fluid mechanics, and bioengineering, manufacturing, systems engineering, and project management. The book offers theory and practical applications for the solutions of real-life problems and will be of interest to graduate level students, educators, researchers, and scientists interested in mathematical modelling and its diverse applications. Features Presents several recent developments in the theory and applications of fractional calculus Includes chapters on different analytical and numerical methods dedicated to several mathematical equations Develops methods for the mathematical models which are governed by fractional differential equations Provides methods for models in physics, engineering, signal processing, fluid mechanics, and bioengineering Discusses real-world problems, theory, and applications




Fractional Differential Equations


Book Description

Fractional Differential Equations: Theoretical Aspects and Applications presents the latest mathematical and conceptual developments in the field of Fractional Calculus and explores the scope of applications in research science and computational modelling. Fractional derivatives arise as a generalization of integer order derivatives and have a long history: their origin can be found in the work of G. W. Leibniz and L. Euler. Shortly after being introduced, the new theory turned out to be very attractive for many famous mathematicians and scientists, including P. S. Laplace, B. Riemann, J. Liouville, N. H. Abel, and J. B. J. Fourier, due to the numerous possibilities it offered for applications.Fractional Calculus, the field of mathematics dealing with operators of differentiation and integration of arbitrary real or even complex order, extends many of the modelling capabilities of conventional calculus and integer-order differential equations and finds its application in various scientific areas, such as physics, mechanics, engineering, economics, finance, biology, and chemistry, among others. However, many aspects from the theoretical and practical point of view have still to be developed in relation with models based on fractional operators. Efficient analytical and numerical methods have been developed but still need particular attention. Fractional Differential Equations: Theoretical Aspects and Applications delves into these methods and applied computational modelling techniques, including analysis of equations involving fractional derivatives, fractional derivatives and the wave equation, analysis of FDE on groups, direct and inverse problems, functional inequalities, and computational methods for FDEs in physics and engineering. Other modelling techniques and applications explored by the authors include general fractional derivatives involving the special functions in analysis, fractional derivatives with respect to another function in analysis, new fractional operators in real-world applications, fractional order dynamical systems, hidden attractors in complex systems, nonlinear dynamics and chaos in engineering applications, quantum chaos, and self-excited attractors. - Provides the most recent and up-to-date developments in the theory and scientific applications Fractional Differential Equations - Includes transportable computer source codes for readers in MATLAB, with code descriptions as it relates to the mathematical modelling and applications - Provides readers with a comprehensive foundational reference for this key topic in computational modeling, which is a mathematical underpinning for most areas of scientific and engineering research




ITJEMAST 10(12) 2019


Book Description

International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies publishes a wide spectrum of research and technical articles as well as reviews, experiments, experiences, modelings, simulations, designs, and innovations from engineering, sciences, life sciences, and related disciplines as well as interdisciplinary/cross-disciplinary/multidisciplinary subjects. Original work is required. Article submitted must not be under consideration of other publishers for publications.




Nonlinear Analysis: Problems, Applications and Computational Methods


Book Description

This book is a collection of original research papers as proceedings of the 6th International Congress of the Moroccan Society of Applied Mathematics organized by Sultan Moulay Slimane University, Morocco, during 7th–9th November 2019. It focuses on new problems, applications and computational methods in the field of nonlinear analysis. It includes various topics including fractional differential systems of various types, time-fractional systems, nonlinear Jerk equations, reproducing kernel Hilbert space method, thrombin receptor activation mechanism model, labour force evolution model, nonsmooth vector optimization problems, anisotropic elliptic nonlinear problem, viscous primitive equations of geophysics, quadratic optimal control problem, multi-orthogonal projections and generalized continued fractions. The conference aimed at fostering cooperation among students, researchers and experts from diverse areas of applied mathematics and related sciences through fruitful deliberations on new research findings. This book is expected to be resourceful for researchers, educators and graduate students interested in applied mathematics and interactions of mathematics with other branches of science and engineering.




Symmetry and Exact Solutions of Nonlinear Mathematical Physics Equations


Book Description

Nonlinear problems, originating from applied science that is closely related to practices, contain rich and extensive content. It makes the corresponding nonlinear models also complex and diverse. Due to the intricacy and contingency of nonlinear problems, unified mathematical methods still remain far and few between. In this regard, the comprehensive use of symmetric methods, along with other mathematical methods, becomes an effective option to solve nonlinear problems.




Advances in Fuzzy Integral and Differential Equations


Book Description

As the title of the book suggests, the topics of this book are organized into two parts. The first part points out the fuzzy differential equations and the second one is related to the fuzzy integral equations. The book contains nine chapters that six chapters are about fuzzy differential equations and three of them are about fuzzy integral equations. In each part, the chapters’ authors are going to discuss the topics theoretically and numerically. All researchers and students in the field of mathematical, computer, and also engineering sciences can benefit from the subjects of the book.




Applications Of Fractional Calculus In Physics


Book Description

Fractional calculus is a collection of relatively little-known mathematical results concerning generalizations of differentiation and integration to noninteger orders. While these results have been accumulated over centuries in various branches of mathematics, they have until recently found little appreciation or application in physics and other mathematically oriented sciences. This situation is beginning to change, and there are now a growing number of research areas in physics which employ fractional calculus.This volume provides an introduction to fractional calculus for physicists, and collects easily accessible review articles surveying those areas of physics in which applications of fractional calculus have recently become prominent.