Fuzzy Logic in Medicine


Book Description

To say that Fuzzy Logic in Medicine, or FLM for short, is an important addi tion to the literature of fuzzy logic and its applications, is an understatement. Edited by two prominent informaticians, Professors S. Barro and R. Marin, it is one of the first books in its field. Between its covers, FLM presents authoritative expositions of a wide spectrum of medical and biological ap plications of fuzzy logic, ranging from image classification and diagnostics to anaesthesia control and risk assessment of heart diseases. As the editors note in the preface, recognition of the relevance of fuzzy set theory and fuzzy logic to biological and medical systems has a long history. In this context, particularly worthy of note is the pioneering work of Profes sor Klaus Peter Adlassnig of the University of Vienna School of Medicine. However, it is only within the past decade that we began to see an accelerat ing growth in the visibility and importance of publications falling under the rubric of fuzzy logic in medicine and biology -a leading example of which is the Journal of the Biomedical Fuzzy Systems Association in Japan. Why did it take so long for this to happen? First, a bit of history.




Fuzzy Logic in Medicine


Book Description

To say that Fuzzy Logic in Medicine, or FLM for short, is an important addi tion to the literature of fuzzy logic and its applications, is an understatement. Edited by two prominent informaticians, Professors S. Barro and R. Marin, it is one of the first books in its field. Between its covers, FLM presents authoritative expositions of a wide spectrum of medical and biological ap plications of fuzzy logic, ranging from image classification and diagnostics to anaesthesia control and risk assessment of heart diseases. As the editors note in the preface, recognition of the relevance of fuzzy set theory and fuzzy logic to biological and medical systems has a long history. In this context, particularly worthy of note is the pioneering work of Profes sor Klaus Peter Adlassnig of the University of Vienna School of Medicine. However, it is only within the past decade that we began to see an accelerat ing growth in the visibility and importance of publications falling under the rubric of fuzzy logic in medicine and biology -a leading example of which is the Journal of the Biomedical Fuzzy Systems Association in Japan. Why did it take so long for this to happen? First, a bit of history.




Fuzzy Logic in Action: Applications in Epidemiology and Beyond


Book Description

Fuzzy Logic in Action: Applications in Epidemiology and Beyond, co-authored by Eduardo Massad, Neli Ortega, Laécio Barros, and Cláudio Struchiner is a remarkable achievement. The book brings a major paradigm shift to medical sciences exploring the use of fuzzy sets in epidemiology and medical diagnosis arena. The volume addresses the most significant topics in the broad areas of epidemiology, mathematical modeling and uncertainty, embodying them within the framework of fuzzy set and dynamic systems theory. Written by leading contributors to the area of epidemiology, medical informatics and mathematics, the book combines a very lucid and authoritative exposition of the fundamentals of fuzzy sets with an insightful use of the fundamentals in the area of epidemiology and diagnosis. The content is clearly illustrated by numerous illustrative examples and several real world applications. Based on their profound knowledge of epidemiology and mathematical modeling, and on their keen understanding of the role played by uncertainty and fuzzy sets, the authors provide insights into the connections between biological phenomena and dynamic systems as a mean to predict, diagnose, and prescribe actions. An example is the use of Bellman-Zadeh fuzzy decision making approach to develop a vaccination strategy to manage measles epidemics in São Paulo. The book offers a comprehensive, systematic, fully updated and self- contained treatise of fuzzy sets in epidemiology and diagnosis. Its content covers material of vital interest to students, researchers and practitioners and is suitable both as a textbook and as a reference. The authors present new results of their own in most of the chapters. In doing so, they reflect the trend to view fuzzy sets, probability theory and statistics as an association of complementary and synergetic modeling methodologies.




Fuzzy Systems in Medicine


Book Description

Provides an introduction to the fundamental concepts of fuzziness together with a compilation of recent advances in the application to medicine. The tutorials in the first part of the book range from basic concepts through theoretical frameworks to rule simplification through data clustering methodologies and the design of multivariate rule bases through self-learning by mapping fuzzy systems onto neural network structures. The case studies which follow are representative of the wide range of applications currently pursued in relation to medicine. The majority of applications presented in this book are about bridging the gap between low-level sensor measurements and intermediate or high-level data representations. The book offers a comprehensive perspective from leading authorities world-wide and provides a tantalising glimpse into the role of sophisticated knowledge engineering methods in shaping the landscape of medical technology in the future.




Medical Imaging: Concepts, Methodologies, Tools, and Applications


Book Description

Medical imaging has transformed the ways in which various conditions, injuries, and diseases are identified, monitored, and treated. As various types of digital visual representations continue to advance and improve, new opportunities for their use in medical practice will likewise evolve. Medical Imaging: Concepts, Methodologies, Tools, and Applications presents a compendium of research on digital imaging technologies in a variety of healthcare settings. This multi-volume work contains practical examples of implementation, emerging trends, case studies, and technological innovations essential for using imaging technologies for making medical decisions. This comprehensive publication is an essential resource for medical practitioners, digital imaging technologists, researchers, and medical students.




Fuzzy and Neuro-Fuzzy Systems in Medicine


Book Description

Fuzzy and Neuro-Fuzzy Systems in Medicineprovides a thorough review of state-of-the-art techniques and practices, defines and explains relevant problems, as well as provides solutions to these problems. After an introduction, the book progresses from one topic to another - with a linear development from fundamentals to applications.




Handbook of Analytic Philosophy of Medicine


Book Description

Medical practice is practiced morality, and clinical research belongs to normative ethics. The present book elucidates and advances this thesis by: 1. analyzing the structure of medical language, knowledge, and theories; 2. inquiring into the foundations of the clinical encounter; 3. introducing the logic and methodology of clinical decision-making, including artificial intelligence in medicine; 4. suggesting comprehensive theories of organism, life, and psyche; of health, illness, and disease; of etiology, diagnosis, prognosis, prevention, and therapy; and 5. investigating the moral and metaphysical issues central to medical practice and research. Many systems of (classical, modal, non-classical, probability, and fuzzy) logic are introduced and applied. Fuzzy medical deontics, fuzzy medical ontology, fuzzy medical concept formation, fuzzy medical decision-making and biomedicine and many other techniques of fuzzification in medicine are introduced for the first time.




Computational Intelligence and Soft Computing Applications in Healthcare Management Science


Book Description

In today’s modernized world, the field of healthcare has seen significant practical innovations with the implementation of computational intelligence approaches and soft computing methods. These two concepts present various solutions to complex scientific problems and imperfect data issues. This has made both very popular in the medical profession. There are still various areas to be studied and improved by these two schemes as healthcare practices continue to develop. Computational Intelligence and Soft Computing Applications in Healthcare Management Science is an essential reference source that discusses the implementation of soft computing techniques and computational methods in the various components of healthcare, telemedicine, and public health. Featuring research on topics such as analytical modeling, neural networks, and fuzzy logic, this book is ideally designed for software engineers, information scientists, medical professionals, researchers, developers, educators, academicians, and students.




GeNeDis 2018


Book Description

The 3rd World Congress on Genetics, Geriatrics, and Neurodegenerative Disease Research (GeNeDis 2018), focuses on recent advances in genetics, geriatrics, and neurodegeneration, ranging from basic science to clinical and pharmaceutical developments. It also provides an international forum for the latest scientific discoveries, medical practices, and care initiatives. Advanced information technologies are discussed, including the basic research, implementation of medico-social policies, and the European and global issues in the funding of long-term care for elderly people.




A Practical Introduction to Fuzzy Logic using LISP


Book Description

This book makes use of the LISP programming language to provide readers with the necessary background to understand and use fuzzy logic to solve simple to medium-complexity real-world problems. It introduces the basics of LISP required to use a Fuzzy LISP programming toolbox, which was specifically implemented by the author to “teach” the theory behind fuzzy logic and at the same time equip readers to use their newly-acquired knowledge to build fuzzy models of increasing complexity. The book fills an important gap in the literature, providing readers with a practice-oriented reference guide to fuzzy logic that offers more complexity than popular books yet is more accessible than other mathematical treatises on the topic. As such, students in first-year university courses with a basic tertiary mathematical background and no previous experience with programming should be able to easily follow the content. The book is intended for students and professionals in the fields of computer science and engineering, as well as disciplines including astronomy, biology, medicine and earth sciences. Software developers may also benefit from this book, which is intended as both an introductory textbook and self-study reference guide to fuzzy logic and its applications. The complete set of functions that make up the Fuzzy LISP programming toolbox can be downloaded from a companion book’s website.