Fuzzy Set and Its Extension


Book Description

Provides detailed mathematical exposition of the fundamentals of fuzzy set theory, including intuitionistic fuzzy sets This book examines fuzzy and intuitionistic fuzzy mathematics and unifies the latest existing works in literature. It enables readers to fully understand the mathematics of both fuzzy set and intuitionistic fuzzy set so that they can use either one in their applications. Each chapter of Fuzzy Set and Its Extension: The Intuitionistic Fuzzy Set begins with an introduction, theory, and several examples to guide readers along. The first one starts by laying the groundwork of fuzzy/intuitionistic fuzzy sets, fuzzy hedges, and fuzzy relations. The next covers fuzzy numbers and explains Zadeh's extension principle. Then comes chapters looking at fuzzy operators; fuzzy similarity measures and measures of fuzziness; and fuzzy/intuitionistic fuzzy measures and fuzzy integrals. The book also: discusses the definition and properties of fuzzy measures; examines matrices and determinants of a fuzzy matrix; and teaches about fuzzy linear equations. Readers will also learn about fuzzy subgroups. The second to last chapter examines the application of fuzzy and intuitionistic fuzzy mathematics in image enhancement, segmentation, and retrieval. Finally, the book concludes with coverage the extension of fuzzy sets. This book: Covers both fuzzy and intuitionistic fuzzy sets and includes examples and practical applications Discusses intuitionistic fuzzy integrals and recent aggregation operators using Choquet integral, with examples Includes a chapter on applications in image processing using fuzzy and intuitionistic fuzzy sets Explains fuzzy matrix operations and features examples Fuzzy Set and Its Extension: The Intuitionistic Fuzzy Set is an ideal text for graduate and research students, as well as professionals, in image processing, decision-making, pattern recognition, and control system design.




Mathematics of Fuzzy Sets and Fuzzy Logic


Book Description

This book presents a mathematically-based introduction into the fascinating topic of Fuzzy Sets and Fuzzy Logic and might be used as textbook at both undergraduate and graduate levels and also as reference guide for mathematician, scientists or engineers who would like to get an insight into Fuzzy Logic. Fuzzy Sets have been introduced by Lotfi Zadeh in 1965 and since then, they have been used in many applications. As a consequence, there is a vast literature on the practical applications of fuzzy sets, while theory has a more modest coverage. The main purpose of the present book is to reduce this gap by providing a theoretical introduction into Fuzzy Sets based on Mathematical Analysis and Approximation Theory. Well-known applications, as for example fuzzy control, are also discussed in this book and placed on new ground, a theoretical foundation. Moreover, a few advanced chapters and several new results are included. These comprise, among others, a new systematic and constructive approach for fuzzy inference systems of Mamdani and Takagi-Sugeno types, that investigates their approximation capability by providing new error estimates.




Hesitant Fuzzy Set


Book Description

Covering a wide range of notions concerning hesitant fuzzy set and its extensions, this book provides a comprehensive reference to the topic. In the case where different sources of vagueness appear simultaneously, the concept of fuzzy set is not able to properly model the uncertainty, imprecise and vague information. In order to overcome such a limitation, different types of fuzzy extension have been introduced so far. Among them, hesitant fuzzy set was first introduced in 2010, and the existing extensions of hesitant fuzzy set have been encountering an increasing interest and attracting more and more attentions up to now. It is not an exaggeration to say that the recent decade has seen the blossoming of a larger set of techniques and theoretical outcomes for hesitant fuzzy set together with its extensions as well as applications.As the research has moved beyond its infancy, and now it is entering a maturing phase with increased numbers and types of extensions, this book aims to give a comprehensive review of such researches. Presenting the review of many and important types of hesitant fuzzy extensions, and including references to a large number of related publications, this book will serve as a useful reference book for researchers in this field.




Fuzzy Set Theory — and Its Applications


Book Description

Since its inception 20 years ago the theory of fuzzy sets has advanced in a variety of ways and in many disciplines. Applications of this theory can be found in artificial intelligence, computer science, control engineering, decision theory, expert systems, logic, management science, operations research, pattern recognition, robotics and others. Theoretical advances, too, have been made in many directions, and a gap has arisen between advanced theoretical topics and applications, which often use the theory at a rather elementary level. The primary goal of this book is to close this gap - to provide a textbook for courses in fuzzy set theory and a book that can be used as an introduction. This revised book updates the research agenda, with the chapters of possibility theory, fuzzy logic and approximate reasoning, expert systems and control, decision making and fuzzy set models in operations research being restructured and rewritten. Exercises have been added to almost all chapters and a teacher's manual is available upon request.




Fuzzy Sets, Fuzzy Logic, And Fuzzy Systems: Selected Papers By Lotfi A Zadeh


Book Description

This book consists of selected papers written by the founder of fuzzy set theory, Lotfi A Zadeh. Since Zadeh is not only the founder of this field, but has also been the principal contributor to its development over the last 30 years, the papers contain virtually all the major ideas in fuzzy set theory, fuzzy logic, and fuzzy systems in their historical context. Many of the ideas presented in the papers are still open to further development. The book is thus an important resource for anyone interested in the areas of fuzzy set theory, fuzzy logic, and fuzzy systems, as well as their applications. Moreover, the book is also intended to play a useful role in higher education, as a rich source of supplementary reading in relevant courses and seminars.The book contains a bibliography of all papers published by Zadeh in the period 1949-1995. It also contains an introduction that traces the development of Zadeh's ideas pertaining to fuzzy sets, fuzzy logic, and fuzzy systems via his papers. The ideas range from his 1965 seminal idea of the concept of a fuzzy set to ideas reflecting his current interest in computing with words — a computing in which linguistic expressions are used in place of numbers.Places in the papers, where each idea is presented can easily be found by the reader via the Subject Index.




Pythagorean Fuzzy Sets


Book Description

This book presents a collection of recent research on topics related to Pythagorean fuzzy set, dealing with dynamic and complex decision-making problems. It discusses a wide range of theoretical and practical information to the latest research on Pythagorean fuzzy sets, allowing readers to gain an extensive understanding of both fundamentals and applications. It aims at solving various decision-making problems such as medical diagnosis, pattern recognition, construction problems, technology selection, and more, under the Pythagorean fuzzy environment, making it of much value to students, researchers, and professionals associated with the field.




Intuitionistic Fuzzy Sets


Book Description

In the beginning of 1983, I came across A. Kaufmann's book "Introduction to the theory of fuzzy sets" (Academic Press, New York, 1975). This was my first acquaintance with the fuzzy set theory. Then I tried to introduce a new component (which determines the degree of non-membership) in the definition of these sets and to study the properties of the new objects so defined. I defined ordinary operations as "n", "U", "+" and "." over the new sets, but I had began to look more seriously at them since April 1983, when I defined operators analogous to the modal operators of "necessity" and "possibility". The late George Gargov (7 April 1947 - 9 November 1996) is the "god father" of the sets I introduced - in fact, he has invented the name "intu itionistic fuzzy", motivated by the fact that the law of the excluded middle does not hold for them. Presently, intuitionistic fuzzy sets are an object of intensive research by scholars and scientists from over ten countries. This book is the first attempt for a more comprehensive and complete report on the intuitionistic fuzzy set theory and its more relevant applications in a variety of diverse fields. In this sense, it has also a referential character.




Proceedings of International Conference on Communication and Computational Technologies


Book Description

This book gathers selected papers presented at 3rd International Conference on Communication and Computational Technologies (ICCCT 2021), jointly organized in virtual format by Rajasthan Institute of Engineering and Technology, Jaipur and Rajasthan Technical University Kota in association with Soft Computing Research Society, during 27–28 February 2021. The volume is a collection of state-of-the-art research work in the cutting-edge technologies related to communication and intelligent systems. The topics covered are algorithms and applications of intelligent systems, informatics and applications, and communication and control systems.




Hesitant Fuzzy Sets Theory


Book Description

This book provides the readers with a thorough and systematic introduction to hesitant fuzzy theory. It presents the most recent research results and advanced methods in the field. These includes: hesitant fuzzy aggregation techniques, hesitant fuzzy preference relations, hesitant fuzzy measures, hesitant fuzzy clustering algorithms and hesitant fuzzy multi-attribute decision making methods. Since its introduction by Torra and Narukawa in 2009, hesitant fuzzy sets have become more and more popular and have been used for a wide range of applications, from decision-making problems to cluster analysis, from medical diagnosis to personnel appraisal and information retrieval. This book offers a comprehensive report on the state-of-the-art in hesitant fuzzy sets theory and applications, aiming at becoming a reference guide for both researchers and practitioners in the area of fuzzy mathematics and other applied research fields (e.g. operations research, information science, management science and engineering) characterized by uncertain ("hesitant") information. Because of its clarity and self contained explanations, the book can also be adopted as a textbook from graduate and advanced undergraduate students.




Fuzzy Set and Its Extension


Book Description

Provides detailed mathematical exposition of the fundamentals of fuzzy set theory, including intuitionistic fuzzy sets This book examines fuzzy and intuitionistic fuzzy mathematics and unifies the latest existing works in literature. It enables readers to fully understand the mathematics of both fuzzy set and intuitionistic fuzzy set so that they can use either one in their applications. Each chapter of Fuzzy Set and Its Extension: The Intuitionistic Fuzzy Set begins with an introduction, theory, and several examples to guide readers along. The first one starts by laying the groundwork of fuzzy/intuitionistic fuzzy sets, fuzzy hedges, and fuzzy relations. The next covers fuzzy numbers and explains Zadeh's extension principle. Then comes chapters looking at fuzzy operators; fuzzy similarity measures and measures of fuzziness; and fuzzy/intuitionistic fuzzy measures and fuzzy integrals. The book also: discusses the definition and properties of fuzzy measures; examines matrices and determinants of a fuzzy matrix; and teaches about fuzzy linear equations. Readers will also learn about fuzzy subgroups. The second to last chapter examines the application of fuzzy and intuitionistic fuzzy mathematics in image enhancement, segmentation, and retrieval. Finally, the book concludes with coverage the extension of fuzzy sets. This book: Covers both fuzzy and intuitionistic fuzzy sets and includes examples and practical applications Discusses intuitionistic fuzzy integrals and recent aggregation operators using Choquet integral, with examples Includes a chapter on applications in image processing using fuzzy and intuitionistic fuzzy sets Explains fuzzy matrix operations and features examples Fuzzy Set and Its Extension: The Intuitionistic Fuzzy Set is an ideal text for graduate and research students, as well as professionals, in image processing, decision-making, pattern recognition, and control system design.