Book Description
The rapid changes that have taken place globally on the economic, social and business fronts characterized the 20th century. The magnitude of these changes has formed an extremely complex and unpredictable decision-making framework, which is difficult to model through traditional approaches. The main purpose of this book is to present the most recent advances in the development of innovative techniques for managing the uncertainty that prevails in the global economic and management environments. These techniques originate mainly from fuzzy sets theory. However, the book also explores the integration of fuzzy sets with other decision support and modeling disciplines, such as multicriteria decision aid, neural networks, genetic algorithms, machine learning, chaos theory, etc. The presentation of the advances in these fields and their real world applications adds a new perspective to the broad fields of management science and economics. Contents: Decision Making, Management and Marketing: Algorithms for Orderly Structuring of Financial OC ObjectsOCO (J Gil-Aluja); A Fuzzy Goal Programming Model for Evaluating a Hospital Service Performance (M Arenas et al.); A Group Decision Making Method Using Fuzzy Triangular Numbers (J L Garc a-Lapresta et al.); Developing Sorting Models Using Preference Disaggregation Analysis: An Experimental Investigation (M Doumpos & C Zopounidis); Stock Markets and Portfolio Management: The Causality Between Interest Rate, Exchange Rate and Stock Price in Emerging Markets: The Case of the Jakarta Stock Exchange (J Gupta et al.); Fuzzy Cognitive Maps in Stock Market (D Koulouriotis et al.); Neural Network vs Linear Models of Stock Returns: An Application to the UK and German Stock Market Indices (A Kanas); Corporate Finance and Banking Management: Expertons and Behaviour of Companies with Regard to the Adequacy Between Business Decisions and Objectives (A Couturier & B Fioleau); Multiple Fuzzy IRR in the Financial Decision Environment (S F Gonzilez et al.); An Automated Knowledge Generation Approach for Managing Credit Scoring Problems (M Michalopoulos et al.); and other papers. Readership: Financial managers, economists, management scientists and computer scientists."