Fundamentals of the Fuzzy Logic-Based Generalized Theory of Decisions


Book Description

Every day decision making and decision making in complex human-centric systems are characterized by imperfect decision-relevant information. Main drawback of the existing decision theories is namely incapability to deal with imperfect information and modeling vague preferences. Actually, a paradigm of non-numerical probabilities in decision making has a long history and arose also in Keynes’s analysis of uncertainty. There is a need for further generalization – a move to decision theories with perception-based imperfect information described in NL. The languages of new decision models for human-centric systems should be not languages based on binary logic but human-centric computational schemes able to operate on NL-described information. Development of new theories is now possible due to an increased computational power of information processing systems which allows for computations with imperfect information, particularly, imprecise and partially true information, which are much more complex than computations over numbers and probabilities. The monograph exposes the foundations of a new decision theory with imperfect decision-relevant information on environment and a decision maker’s behavior. This theory is based on the synthesis of the fuzzy sets theory with perception-based information and the probability theory. The book is self containing and represents in a systematic way the decision theory with imperfect information into the educational systems. The book will be helpful for teachers and students of universities and colleges, for managers and specialists from various fields of business and economics, production and social sphere.




Fuzzy Multi-Criteria Decision Making


Book Description

This work examines all the fuzzy multicriteria methods recently developed, such as fuzzy AHP, fuzzy TOPSIS, interactive fuzzy multiobjective stochastic linear programming, fuzzy multiobjective dynamic programming, grey fuzzy multiobjective optimization, fuzzy multiobjective geometric programming, and more. Each of the 22 chapters includes practical applications along with new developments/results. This book may be used as a textbook in graduate operations research, industrial engineering, and economics courses. It will also be an excellent resource, providing new suggestions and directions for further research, for computer programmers, mathematicians, and scientists in a variety of disciplines where multicriteria decision making is needed.




Fuzzy Sets, Decision Making, and Expert Systems


Book Description

In the two decades since its inception by L. Zadeh, the theory of fuzzy sets has matured into a wide-ranging collection of concepts, models, and tech niques for dealing with complex phenomena which do not lend themselves to analysis by classical methods based on probability theory and bivalent logic. Nevertheless, a question which is frequently raised by the skeptics is: Are there, in fact, any significant problem areas in which the use of the theory of fuzzy sets leads to results which could not be obtained by classical methods? The approximately 5000 publications in this area, which are scattered over many areas such as artificial intelligence, computer science, control engineering, decision making, logic, operations research, pattern recognition, robotics and others, provide an affirmative answer to this question. In spite of the large number of publications, good and comprehensive textbooks which could facilitate the access of newcomers to this area and support teaching were missing until recently. To help to close this gap and to provide a textbook for courses in fuzzy set theory which can also be used as an introduction to this field, the first volume ofthis book was published in 1985 [Zimmermann 1985 b]. This volume tried to cover fuzzy set theory and its applications as extensively as possible. Applications could, therefore, only be described to a limited extent and not very detailed.




Decision Making Theories and Methods Based on Interval-Valued Intuitionistic Fuzzy Sets


Book Description

This is the first book to provide a comprehensive and systematic introduction to the ranking methods for interval-valued intuitionistic fuzzy sets, multi-criteria decision-making methods with interval-valued intuitionistic fuzzy sets, and group decision-making methods with interval-valued intuitionistic fuzzy preference relations. Including numerous application examples and illustrations with tables and figures and presenting the authors’ latest research developments, it is a valuable resource for researchers and professionals in the fields of fuzzy mathematics, operations research, information science, management science and decision analysis.




Type-2 Fuzzy Decision-Making Theories, Methodologies and Applications


Book Description

This book integrates the type-2 fuzzy sets and multiple criteria decision making analysis in recent years and offers an authoritative treatise on the essential topics, both at the theoretical and applied end. In this book, some basic theory, type-2 fuzzy sets, methodology, algorithms, are introduced and then some compelling case studies in decision problems are covered in depth. The authors offer an authoritative treatise on the essential topics, both at the theoretical and applied end; In a systematic and logically organized way, the book exposes the reader to the essentials of the theory of type-2 fuzzy sets, methodology, algorithms, and their applications. Numerous techniques of decision making are carefully generalized by bringing the ideas of type-2 fuzzy sets; this concerns well-known methods including TOPSIS, Analytical Network Process, TODIM, and VIKOR. This book exposes the readers to the essentials of the theory of type-2 fuzzy sets, methodology, algorithms, and their applications.




Decision and Game Theory in Management With Intuitionistic Fuzzy Sets


Book Description

The focus of this book is on establishing theories and methods of both decision and game analysis in management using intuitionistic fuzzy sets. It proposes a series of innovative theories, models and methods such as the representation theorem and extension principle of intuitionistic fuzzy sets, ranking methods of intuitionistic fuzzy numbers, non-linear and linear programming methods for intuitionistic fuzzy multi-attribute decision making and (interval-valued) intuitionistic fuzzy matrix games. These theories and methods form the theory system of intuitionistic fuzzy decision making and games, which is not only remarkably different from those of the traditional, Bayes and/or fuzzy decision theory but can also provide an effective and efficient tool for solving complex management problems. Since there is a certain degree of inherent hesitancy in real-life management, which cannot always be described by the traditional mathematical methods and/or fuzzy set theory, this book offers an effective approach to using the intuitionistic fuzzy set expressed with membership and non-membership functions. This book is addressed to all those involved in theoretical research and practical applications from a variety of fields/disciplines: decision science, game theory, management science, fuzzy sets, operational research, applied mathematics, systems engineering, industrial engineering, economics, etc.




Advancements in Fuzzy Reliability Theory


Book Description

In recent years, substantial efforts are being made in the development of reliability theory including fuzzy reliability theories and their applications to various real-life problems. Fuzzy set theory is widely used in decision making and multi criteria such as management and engineering, as well as other important domains in order to evaluate the uncertainty of real-life systems. Fuzzy reliability has proven to have effective tools and techniques based on real set theory for proposed models within various engineering fields, and current research focuses on these applications. Advancements in Fuzzy Reliability Theory introduces the concept of reliability fuzzy set theory including various methods, techniques, and algorithms. The chapters present the latest findings and research in fuzzy reliability theory applications in engineering areas. While examining the implementation of fuzzy reliability theory among various industries such as mining, construction, automobile, engineering, and more, this book is ideal for engineers, practitioners, researchers, academicians, and students interested in fuzzy reliability theory applications in engineering areas.




Decision Making with Spherical Fuzzy Sets


Book Description

This book introduces readers to the novel concept of spherical fuzzy sets, showing how these sets can be applied in practice to solve various decision-making problems. It also demonstrates that these sets provide a larger preference volume in 3D space for decision-makers. Written by authoritative researchers, the various chapters cover a large amount of theoretical and practical information, allowing readers to gain an extensive understanding of both the fundamentals and applications of spherical fuzzy sets in intelligent decision-making and mathematical programming.




Fuzzy Multiple Attribute Decision Making


Book Description

This monograph is intended for an advanced undergraduate or graduate course as well as for researchers, who want a compilation of developments in this rapidly growing field of operations research. This is a sequel to our previous works: "Multiple Objective Decision Making--Methods and Applications: A state-of-the-Art Survey" (No.164 of the Lecture Notes); "Multiple Attribute Decision Making--Methods and Applications: A State-of-the-Art Survey" (No.186 of the Lecture Notes); and "Group Decision Making under Multiple Criteria--Methods and Applications" (No.281 of the Lecture Notes). In this monograph, the literature on methods of fuzzy Multiple Attribute Decision Making (MADM) has been reviewed thoroughly and critically, and classified systematically. This study provides readers with a capsule look into the existing methods, their characteristics, and applicability to the analysis of fuzzy MADM problems. The basic concepts and algorithms from the classical MADM methods have been used in the development of the fuzzy MADM methods. We give an overview of the classical MADM in Chapter II. Chapter III presents the basic concepts and mathematical operations of fuzzy set theory with simple numerical examples in a easy-to-read and easy-to-follow manner. Fuzzy MADM methods basically consist of two phases: (1) the aggregation of the performance scores with respect to all the attributes for each alternative, and (2) the rank ordering of the alternatives according to the aggregated scores.




Decision Making in Manufacturing Environment Using Graph Theory and Fuzzy Multiple Attribute Decision Making Methods


Book Description

Decision Making in Manufacturing Environment Using Graph Theory and Fuzzy Multiple Attribute Decision Making Methods presents the concepts and details of applications of MADM methods. A range of methods are covered including Analytic Hierarchy Process (AHP), Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), VIšekriterijumsko KOmpromisno Rangiranje (VIKOR), Data Envelopment Analysis (DEA), Preference Ranking METHod for Enrichment Evaluations (PROMETHEE), ELimination Et Choix Traduisant la Realité (ELECTRE), COmplex PRoportional ASsessment (COPRAS), Grey Relational Analysis (GRA), UTility Additive (UTA), and Ordered Weighted Averaging (OWA). The existing MADM methods are improved upon and three novel multiple attribute decision making methods for solving the decision making problems of the manufacturing environment are proposed. The concept of integrated weights is introduced in the proposed subjective and objective integrated weights (SOIW) method and the weighted Euclidean distance based approach (WEDBA) to consider both the decision maker’s subjective preferences as well as the distribution of the attributes data of the decision matrix. These methods, which use fuzzy logic to convert the qualitative attributes into the quantitative attributes, are supported by various real-world application examples. Also, computer codes for AHP, TOPSIS, DEA, PROMETHEE, ELECTRE, COPRAS, and SOIW methods are included. This comprehensive coverage makes Decision Making in Manufacturing Environment Using Graph Theory and Fuzzy Multiple Attribute Decision Making Methods a key reference for the designers, manufacturing engineers, practitioners, managers, institutes involved in both design and manufacturing related projects. It is also an ideal study resource for applied research workers, academicians, and students in mechanical and industrial engineering.