G-Quadruplex Nucleic Acids


Book Description

This volume covers the structures, properties, and functions of G-quadruplexes in a wide range of biological disciplines, including therapeutic intervention and biomaterial application. The chapters in this book explore a wide range of vital and new experimental techniques used in the study of G-quadruplexes. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Practical and cutting-edge, G-Quadruplex DNA: Methods and Protocols is a valuable resource for both novice and experienced researchers who work in biophysics, structural biology, computational biology, biochemistry, and molecular and cell biology, and who want to learn more about the potential roles and effects of G-quadruplex in these fields.




G-Quadruplex DNA


Book Description

Recent work has revealed that stabilizing G-quadruplexes in telomeric DNA inhibits telomerase activity, providing impetus for the development of G-quartet-interacting drugs, while G-quartet-containing oligonucleotides have been recognized as a potent class of aptamers effective against STAT3 and other transcription factors implicated in oncogenesis, proving these guanine-quartets to be a vital and rich area for future study. In "G-Quadruplex DNA: Methods and Protocols", experts in the field present a collection of detailed techniques for studying G-quartet formation, dynamics, and molecular recognition. Written in the highly successful Methods in Molecular BiologyTM series format, chapters include brief introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, "G-Quadruplex DNA: Methods and Protocols "promises to be a useful resource for those familiar with G-quartets as well as an easy entry point for those researchers from diverse fields who are just developing an interest in the exciting implications of G-quadruplex DNA.




Quadruplex Nucleic Acids


Book Description

Guanine rich DNA has been known for decades to form unusual structures, although their biological relevance was little understood. Recent advances have demonstrated that quadruplex structures can play a role in gene expression and provide opportunities for a new class of anticancer therapeutics. A number of quadruplex-specific proteins have also been discovered. Quadruplex Nucleic Acids discusses all aspects of the fundamentals of quadruplex structures, including their structure in solution and the crystalline state, the kinetics of quadruplex folding, and the role of cations in structure and stability. The biology of quadruplexes and G-rich genomic regions and G-quartets in supramolecular chemistry and nanoscience are also considered. Surveying the current state of knowledge, and with contributions from leading experts, this is the first comprehensive review of this rapidly growing area. Quadruplex Nucleic Acids is ideal for researchers interested in areas related to chemistry, chemical biology, medicinal chemistry, molecular pharmacology, and structural and molecular biology.




Therapeutic Applications of Quadruplex Nucleic Acids


Book Description

"Therapeutic applications of quadruplex nucleic acids provides a single comprehensive survey that describes and assesses recent advances in quadruplex therapeutics and targeting strategies. It also covers the underlying fundamentals of such topics as quadruplex structure, small-molecule recognition, biological roles of genomic quadruplexes, and quadruplex informatics"--P. [4] of cover.




Protein-Nucleic Acid Interactions


Book Description

This book provides both in-depth background and up-to-date information in this area. The chapters are organized by general themes and principles, written by experts who illustrate topics with current findings. Topics covered include: - the role of ions and hydration in protein-nucleic acid interactions - transcription factors and combinatorial specificity - indirect readout of DNA sequence - single-stranded nucleic acid binding proteins - nucleic acid junctions and proteins, - RNA protein recognition - recognition of DNA damage. It will be a key reference for both advanced students and established scientists wishing to broaden their horizons.




The Alkali Metal Ions: Their Role for Life


Book Description

MILS-16 provides an up-to-date review of the impact of alkali metal ions on life. Their bioinorganic chemistry and analytical determination, the solid state structures of bio-ligand complexes and the properties of alkali metal ions in solution in the context of all kinds of biologically relevant ligands are covered, this includes proteins (enzymes) and nucleic acids (G-quadruplexes). Minerals containing sodium (Na+) and potassium (K+) are abundant in the Earth's crust, making Na+ and K+ easily available. In contrast, the alkali elements lithium (Li+), rubidium, and cesium are rare and the radioactive francium occurs only in traces. Since the intra- and extracellular, as well as the compartmental concentrations of Na+ and K+ differ significantly, homeostasis and active transport of these ions are important; this involves transporters/carriers and pore-forming ion channel proteins. Systems like Na+/K+-ATPases, H+/K+-ATPases or Na+/H+ antiporters are thoroughly discussed. The role of K+ in photosynthesis and the role of Na+ in charging the "battery of life" are pointed out. Also, the relationships between alkali metal ions and diseases (e.g., Parkinson or traumatic brain injury) are covered and the relevance of Li+ salts in medicine (pharmacology and mechanism) is reviewed. This and more is treated in an authoritative and timely manner in the 16 stimulating chapters of Volume 16, The Alkali Metal Ions: Their Role for Life, which are written by 44 internationally recognized experts from 12 nations. The impact of this vibrant research area is manifested in nearly 3000 references, over 30 tables and more than 150 illustrations (two thirds in color). MILS-16 also provides excellent information for teaching. Astrid Sigel, Helmut Sigel, and Roland K. O. Sigel have long-standing interests in Biological Inorganic Chemistry. Their research focuses on metal ion interactions with nucleotides and nucleic acids and on related topics. They edited previously 44 volumes in the series Metal Ions in Biological Systems.




DNA Replication


Book Description

This book reviews the latest trends and future directions of DNA replication research. The contents reflect upon the principles that have been established through the genetic and enzymatic studies of bacterial, viral, and cellular replication during the past decades. The book begins with a historical overview of the studies on eukaryotic DNA replication by Professor Thomas Kelly, a pioneer of the field. The following chapters include genome-wide studies of replication origins and initiation factor binding, as well as the timing of DNA replications, mechanisms of initiation, DNA chain elongation and termination of DNA replication, the structural basis of functions of protein complexes responsible for execution of DNA replication, cell cycle-dependent regulation of DNA replication, the nature of replication stress and cells’ strategy to deal with the stress, and finally how all these phenomena are interconnected to genome instability and development of various diseases. By reviewing the existing concepts ranging from the old principles to the newest ideas, the book gives readers an opportunity to learn how the classical replication principles are now being modified and new concepts are being generated to explain how genome DNA replication is achieved with such high adaptability and plasticity. With the development of new methods including cryoelectron microscopy analyses of huge protein complexes, single molecular analyses of initiation and elongation of DNA replication, and total reconstitution of eukaryotic DNA replication with purified factors, the field is enjoying one of its most exciting moments, and this highly timely book conveys that excitement to all interested readers.




Principles of Nucleic Acid Structure


Book Description

New textbooks at all levels of chemistry appear with great regularity. Some fields like basic biochemistry, organic reaction mechanisms, and chemical ther modynamics are well represented by many excellent texts, and new or revised editions are published sufficiently often to keep up with progress in research. However, some areas of chemistry, especially many of those taught at the grad uate level, suffer from a real lack of up-to-date textbooks. The most serious needs occur in fields that are rapidly changing. Textbooks in these subjects usually have to be written by scientists actually involved in the research which is advancing the field. It is not often easy to persuade such individuals to set time aside to help spread the knowledge they have accumulated. Our goal, in this series, is to pinpoint areas of chemistry where recent progress has outpaced what is covered in any available textbooks, and then seek out and persuade experts in these fields to produce relatively concise but instructive introductions to their fields. These should serve the needs of one semester or one quarter graduate courses in chemistry and biochemistry. In some cases the availability of texts in active research areas should help stimulate the creation of new courses. CHARLES R. CANTOR New York Preface This monograph is based on a review on polynucleotide structures written for a book series in 1976.




Chemistry and Biology of Non-canonical Nucleic Acids


Book Description

Discover the fundamentals and intricacies of a subject at the interface of chemistry and biology with this authoritative resource Chemistry and Biology of Non-canonical Nucleic Acids delivers a comprehensive treatment of the chemistry and biology of non-canonical nucleic acids, including their history, structures, stabilities, properties, and functions. You'll learn about the role of these vital compounds in transcription, translation, regulation, telomeres, helicases, cancers, neurodegenerative diseases, therapeutic applications, nanotechnology, and more. An ideal resource for graduate students, researchers in physical, organic, analytical, and inorganic chemistry will learn about uncommon nucleic acids, become the common non-canonical nucleic acids that fascinate and engage academics and professionals in private industry. Split into 15 chapters covering a wide range of aspects of non-canonical nucleic acids, the book explains why these compounds exist at the forefront of a new research revolution at the intersection of chemistry and biology. Chemistry and Biology of Non-canonical Nucleic Acids also covers a broad range of topics critical to understanding these versatile and omnipresent chemicals, including: * A discussion of the dynamic regulation of biosystems by nucleic acids with non-canonical structures * The role played by nucleic acid structures in neurodegenerative diseases and various cancers * An exploration of the future outlook for the chemistry and biology of non-canonical nucleic acids * An introduction to the history of canonical and non-canonical structures of nucleic acids * An analysis of the physicochemical properties of non-canonical nucleic acids Perfect for biochemists, materials scientists, and bioengineers, Chemistry and Biology of Non-canonical Nucleic Acids will also earn a place in the libraries of medicinal and pharmaceutical chemists who wish to improve their understanding of life processes and the role that non-canonical nucleic acids play in them.




Quadruplex Nucleic Acids As Targets For Medicinal Chemistry


Book Description

The realisation that human, animal, viral and bacterial genomes all contain over-representation of higher-order quadruplex structures in regulatory and other pharmacologically-useful regions, has led to a large number of studies aimed at exploiting this findings for therapeutic and diagnostic purposes. Quadruplex-binding small molecules are starting to be evaluated in human clinical trials. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the Annual Reports in Medicinal Chemistry series