GAAS Solar Cell Radiation Handbook


Book Description

Gallium Arsenide (GaAs) has been of interest as a photovoltaic material for many years. This interest arises primarily for three reasons. First, the bandgap of 1.42eV at 300 K is very nearly ideal for a photovoltaic device operating in our solar spectrum. Second, GaAs solar cells should be capable of operating at higher temperatures than silicon (Si) cells. Third, GaAs solar cells are expected to be very radiation resistant. This handbook provides a history of GaAs solar cell development; Photovoltaic equations are described along with instrumentation techniques for measuring solar cells; Radiation effects in solar cells, electrical performance, and spacecraft flight data for solar cells are discussed; and the space radiation environment and solar array degradation calculations are addressed.




GaAs Solar Cell Radiation Handbook


Book Description

History of GaAs solar cell development is provided. Photovoltaic equations are described along with instrumentation techniques for measuring solar cells. Radiation effects in solar cells, electrical performance, and spacecraft flight data for solar cells are discussed. The space radiation environment and solar array degradation calculations are addressed. Anspaugh, B. E. Jet Propulsion Laboratory NASA-CR-203421, NAS 1.26:203421, JPL-Publ-96-9 ...




Practical Handbook of Photovoltaics


Book Description

As part of the growing sustainable and renewable energy movement, the design, manufacture and use of photovoltaic devices is increasing in pace and frequency. The Handbook of Photovoltaics will be a 'benchmark' publication for those involved in the design, manufacture and use of these devices.The Handbook covers the principles of solar cell function, the raw materials, photovoltaic systems, standards, calibration, testing, economics and case studies. The editors have assembled a cast of internationally-respected contributors from industry and academia. The report is essential reading for: Physicists, electronic engineers, designers of systems, installers, architects, policy-makers relating to photovoltaics.







McEvoy's Handbook of Photovoltaics


Book Description

Practical Handbook of Photovoltaics, Third Edition, is a 'benchmark' publication for those involved in the design, manufacture and use of these devices. This fully revised handbook includes brand new sections on smart grids, net metering and the modeling of photovoltaic systems, as well as fully revised content on developments in photovoltaic applications, the economics of PV manufacturing and updated chapters on solar cell function, raw materials, photovoltaic standards, calibration and testing, all with new examples and case studies. The editor has assembled internationally-respected contributors from industry and academia around the world to make this a truly global reference. It is essential reading for electrical engineers, designers of systems, installers, architects, policymakers and physicists working with photovoltaics. - Presents a cast of international experts from industry and academia to ensure the highest quality information from multiple stakeholder perspectives - Covers all things photovoltaics, from the principles of solar cell function and their raw materials, to the installation and design of full photovoltaic systems - Includes case studies, practical examples, and reports on the latest advances and worldwide applications




Handbook of Photovoltaic Science and Engineering


Book Description

The most comprehensive, authoritative and widely cited reference on photovoltaic solar energy Fully revised and updated, the Handbook of Photovoltaic Science and Engineering, Second Edition incorporates the substantial technological advances and research developments in photovoltaics since its previous release. All topics relating to the photovoltaic (PV) industry are discussed with contributions by distinguished international experts in the field. Significant new coverage includes: three completely new chapters and six chapters with new authors device structures, processing, and manufacturing options for the three major thin film PV technologies high performance approaches for multijunction, concentrator, and space applications new types of organic polymer and dye-sensitized solar cells economic analysis of various policy options to stimulate PV growth including effect of public and private investment Detailed treatment covers: scientific basis of the photovoltaic effect and solar cell operation the production of solar silicon and of silicon-based solar cells and modules how choice of semiconductor materials and their production influence costs and performance making measurements on solar cells and modules and how to relate results under standardised test conditions to real outdoor performance photovoltaic system installation and operation of components such as inverters and batteries. architectural applications of building-integrated PV Each chapter is structured to be partially accessible to beginners while providing detailed information of the physics and technology for experts. Encompassing a review of past work and the fundamentals in solar electric science, this is a leading reference and invaluable resource for all practitioners, consultants, researchers and students in the PV industry.




Solar Cells


Book Description

Enormous leaps forward in the efficiency and the economy of solar cells are being made at a furious pace. New materials and manufacturing processes have opened up new realms of possibility for the application of solar cells. Crystalline silicon cells are increasingly making way for thin film cells, which are spawning experimentation with third-generation high-efficiency multijunction cells, carbon-nanotube based cells, UV light for voltage enhancement, and the use of the infrared spectrum for night-time operation, to name only a few recent advances. This thoroughly updated new edition of Markvart and Castaner's Solar Cells, extracted from their industry standard Practical Handbook of Photovoltaics, is the definitive reference covering the science and operation, materials and manufacture of solar cells. It is essential reading for engineers, installers, designers, and policy-makers who need to understand the science behind the solar cells of today, and tomorrow, in order to take solar energy to the next level. - A thorough update to the definitive reference to solar cells, created by a cast of international experts from industry and academia to ensure the highest quality information from multiple perspectives - Covers the whole spectrum of solar cell information, from basic scientific background, to the latest advances in materials, to manufacturing issues, to testing and calibration. - Case studies, practical examples and reports on the latest advances take the new edition of this amazing resource beyond a simple amalgamation of a vast amount of knowledge, into the realm of real world applications




Practical Handbook of Photovoltaics


Book Description

This handbook opens with an overview of solar radiation and how its energy can be tapped using photovoltaic cells. Other chapters cover the technology, manufacture and application of PV cells in real situations. The book ends by exploring the economic and business aspects of PV systems.




Solar Cell Materials


Book Description

This book presents a comparison of solar cell materials, including both new materials based on organics, nanostructures and novel inorganics and developments in more traditional photovoltaic materials. It surveys the materials and materials trends in the field including third generation solar cells (multiple energy level cells, thermal approaches and the modification of the solar spectrum) with an eye firmly on low costs, energy efficiency and the use of abundant non-toxic materials.




Principles of Radiation Interaction in Matter and Detection (4th Edition)


Book Description

"The fourth edition of this book has been widely revised. It includes additional chapters and some sections are complemented with either new ones or an extension of their content. In this latest edition a complete treatment of the physics and properties of semiconductors is presented, covering transport phenomena in semiconductors, scattering mechanisms, radiation effects and displacement damages. Furthermore, this edition presents a comprehensive treatment of the Coulomb scattering on screened nuclear potentials resulting from electrons, protons, light- and heavy-ions -- ranging from (very) low up to ultra-relativistic kinetic energies -- and allowing one to derive the corresponding NIEL (non-ionizing energy-loss) doses deposited in any material. The contents are organized into two parts: Chapters 1 to 7 cover Particle Interactions and Displacement Damage while the remaining chapters focus on Radiation Environments and Particle Detection. This book can serve as reference for graduate students and final-year undergraduates and also as supplement for courses in particle, astroparticle, space physics and instrumentation. A section of the book is directed toward courses in medical physics. Researchers in experimental particle physics at low, medium, and high energy who are dealing with instrumentation will also find the book useful."--