Galois Connections and Applications


Book Description

Galois connections provide the order- or structure-preserving passage between two worlds of our imagination - and thus are inherent in hu man thinking wherever logical or mathematical reasoning about cer tain hierarchical structures is involved. Order-theoretically, a Galois connection is given simply by two opposite order-inverting (or order preserving) maps whose composition yields two closure operations (or one closure and one kernel operation in the order-preserving case). Thus, the "hierarchies" in the two opposite worlds are reversed or transported when passing to the other world, and going forth and back becomes a stationary process when iterated. The advantage of such an "adjoint situation" is that information about objects and relationships in one of the two worlds may be used to gain new information about the other world, and vice versa. In classical Galois theory, for instance, properties of permutation groups are used to study field extensions. Or, in algebraic geometry, a good knowledge of polynomial rings gives insight into the structure of curves, surfaces and other algebraic vari eties, and conversely. Moreover, restriction to the "Galois-closed" or "Galois-open" objects (the fixed points of the composite maps) leads to a precise "duality between two maximal subworlds".







Galois Theory


Book Description

Praise for the First Edition ". . .will certainly fascinate anyone interested in abstractalgebra: a remarkable book!" —Monatshefte fur Mathematik Galois theory is one of the most established topics inmathematics, with historical roots that led to the development ofmany central concepts in modern algebra, including groups andfields. Covering classic applications of the theory, such assolvability by radicals, geometric constructions, and finitefields, Galois Theory, Second Edition delves into noveltopics like Abel’s theory of Abelian equations, casusirreducibili, and the Galois theory of origami. In addition, this book features detailed treatments of severaltopics not covered in standard texts on Galois theory,including: The contributions of Lagrange, Galois, and Kronecker How to compute Galois groups Galois's results about irreducible polynomials of primeor prime-squared degree Abel's theorem about geometric constructions on thelemniscates Galois groups of quartic polynomials in allcharacteristics Throughout the book, intriguing Mathematical Notes andHistorical Notes sections clarify the discussed ideas andthe historical context; numerous exercises and examples use Mapleand Mathematica to showcase the computations related to Galoistheory; and extensive references have been added to provide readerswith additional resources for further study. Galois Theory, Second Edition is an excellent book forcourses on abstract algebra at the upper-undergraduate and graduatelevels. The book also serves as an interesting reference for anyonewith a general interest in Galois theory and its contributions tothe field of mathematics.




Galois Theory for Beginners


Book Description

Galois theory is the culmination of a centuries-long search for a solution to the classical problem of solving algebraic equations by radicals. This book follows the historical development of the theory, emphasizing concrete examples along the way. It is suitable for undergraduates and beginning graduate students.




Differential Galois Theory through Riemann-Hilbert Correspondence


Book Description

Differential Galois theory is an important, fast developing area which appears more and more in graduate courses since it mixes fundamental objects from many different areas of mathematics in a stimulating context. For a long time, the dominant approach, usually called Picard-Vessiot Theory, was purely algebraic. This approach has been extensively developed and is well covered in the literature. An alternative approach consists in tagging algebraic objects with transcendental information which enriches the understanding and brings not only new points of view but also new solutions. It is very powerful and can be applied in situations where the Picard-Vessiot approach is not easily extended. This book offers a hands-on transcendental approach to differential Galois theory, based on the Riemann-Hilbert correspondence. Along the way, it provides a smooth, down-to-earth introduction to algebraic geometry, category theory and tannakian duality. Since the book studies only complex analytic linear differential equations, the main prerequisites are complex function theory, linear algebra, and an elementary knowledge of groups and of polynomials in many variables. A large variety of examples, exercises, and theoretical constructions, often via explicit computations, offers first-year graduate students an accessible entry into this exciting area.




An Invitation to Applied Category Theory


Book Description

Category theory reveals commonalities between structures of all sorts. This book shows its potential in science, engineering, and beyond.




Mordell–Weil Lattices


Book Description

This book lays out the theory of Mordell–Weil lattices, a very powerful and influential tool at the crossroads of algebraic geometry and number theory, which offers many fruitful connections to other areas of mathematics. The book presents all the ingredients entering into the theory of Mordell–Weil lattices in detail, notably, relevant portions of lattice theory, elliptic curves, and algebraic surfaces. After defining Mordell–Weil lattices, the authors provide several applications in depth. They start with the classification of rational elliptic surfaces. Then a useful connection with Galois representations is discussed. By developing the notion of excellent families, the authors are able to design many Galois representations with given Galois groups such as the Weyl groups of E6, E7 and E8. They also explain a connection to the classical topic of the 27 lines on a cubic surface. Two chapters deal with elliptic K3 surfaces, a pulsating area of recent research activity which highlights many central properties of Mordell–Weil lattices. Finally, the book turns to the rank problem—one of the key motivations for the introduction of Mordell–Weil lattices. The authors present the state of the art of the rank problem for elliptic curves both over Q and over C(t) and work out applications to the sphere packing problem. Throughout, the book includes many instructive examples illustrating the theory.




Graph Structures for Knowledge Representation and Reasoning


Book Description

This open access book constitutes the thoroughly refereed post-conference proceedings of the 6th International Workshop on Graph Structures for Knowledge Representation and Reasoning, GKR 2020, held virtually in September 2020, associated with ECAI 2020, the 24th European Conference on Artificial Intelligence. The 7 revised full papers presented together with 2 invited contributions were reviewed and selected from 9 submissions. The contributions address various issues for knowledge representation and reasoning and the common graph-theoretic background, which allows to bridge the gap between the different communities.




Category Theory And Applications: A Textbook For Beginners (Second Edition)


Book Description

Category Theory now permeates most of Mathematics, large parts of theoretical Computer Science and parts of theoretical Physics. Its unifying power brings together different branches, and leads to a better understanding of their roots.This book is addressed to students and researchers of these fields and can be used as a text for a first course in Category Theory. It covers the basic tools, like universal properties, limits, adjoint functors and monads. These are presented in a concrete way, starting from examples and exercises taken from elementary Algebra, Lattice Theory and Topology, then developing the theory together with new exercises and applications.A reader should have some elementary knowledge of these three subjects, or at least two of them, in order to be able to follow the main examples, appreciate the unifying power of the categorical approach, and discover the subterranean links brought to light and formalised by this perspective.Applications of Category Theory form a vast and differentiated domain. This book wants to present the basic applications in Algebra and Topology, with a choice of more advanced ones, based on the interests of the author. References are given for applications in many other fields.In this second edition, the book has been entirely reviewed, adding many applications and exercises. All non-obvious exercises have now a solution (or a reference, in the case of an advanced topic); solutions are now collected in the last chapter.




Galois Theories


Book Description

Develops Galois theory in a more general context, emphasizing category theory.