Game Theory in Wireless and Communication Networks


Book Description

This unified 2001 treatment of game theory focuses on finding state-of-the-art solutions to issues surrounding the next generation of wireless and communications networks. The key results and tools of game theory are covered, as are various real-world technologies and a wide range of techniques for modeling, design and analysis.




Game Theory in Communication Networks


Book Description

A mathematical tool for scientists and researchers who work with computer and communication networks, Game Theory in Communication Networks: Cooperative Resolution of Interactive Networking Scenarios addresses the question of how to promote cooperative behavior in interactive situations between heterogeneous entities in communication networking scenarios. It explores network design and management from a theoretical perspective, using game theory and graph theory to analyze strategic situations and demonstrate profitable behaviors of the cooperative entities. The book promotes the use of Game Theory to address important resource management and security issues found in next generation communications networks, particularly heterogeneous networks, for cases where cooperative interactive networking scenarios can be formulated. It provides solutions for representative mechanisms that need improvement by presenting a theoretical step-by-step approach. The text begins with a presentation of theory that can be used to promote cooperation for the entities in a particular interactive situation. Next, it examines two-player interaction as well as interactions between multiple players. The final chapter presents and examines a performance evaluation framework based on MATLAB®. Each chapter begins by introducing basic theory for dealing with a particular interactive situation and illustrating how particular aspects of game theory can be used to formulate and solve interactive situations that appear in communication networks regularly. The second part of each chapter presents example scenarios that demonstrate the applicability and power of the theory—illustrating a number of cooperative interactions and discussing how they could be addressed within the theoretical framework presented in the first part of the chapter. The book also includes simulation code that can be downloaded so you can use some or all of the proposed models to improve your own network designs. Specific topics covered include network selection, user-network interaction, network synthesis, and context-aware security provisioning.




Game Theory for Next Generation Wireless and Communication Networks


Book Description

A unified treatment of the latest game theoretic approaches for designing, modeling, and optimizing emerging wireless communication networks. Covering theory, analytical tools, and applications, it is ideal for researchers and graduate students in academia and industry designing efficient, scalable and robust protocols for future wireless networks.




Game Theory and Learning for Wireless Networks


Book Description

Written by leading experts in the field, Game Theory and Learning for Wireless Networks Covers how theory can be used to solve prevalent problems in wireless networks such as power control, resource allocation or medium access control. With the emphasis now on promoting ‘green’ solutions in the wireless field where power consumption is minimized, there is an added focus on developing network solutions that maximizes the use of the spectrum available. With the growth of distributed wireless networks such as Wi-Fi and the Internet; the push to develop ad hoc and cognitive networks has led to a considerable interest in applying game theory to wireless communication systems. Game Theory and Learning for Wireless Networks is the first comprehensive resource of its kind, and is ideal for wireless communications R&D engineers and graduate students. Samson Lasaulce is a senior CNRS researcher at the Laboratory of Signals and Systems (LSS) at Supélec, Gif-sur-Yvette, France. He is also a part-time professor in the Department of Physics at École Polytechnique, Palaiseau, France. Hamidou Tembine is a professor in the Department of Telecommunications at Supélec, Gif-sur-Yvette, France. Merouane Debbah is a professor at Supélec, Gif-sur-Yvette, France. He is the holder of the Alcatel-Lucent chair in flexible radio since 2007. The first tutorial style book that gives all the relevant theory, at the right level of rigour, for the wireless communications engineer Bridges the gap between theory and practice by giving examples and case studies showing how game theory can solve real world resource allocation problems Contains algorithms and techniques to implement game theory in wireless terminals




Network Games


Book Description

Traditional network optimization focuses on a single control objective in a network populated by obedient users and limited dispersion of information. However, most of today's networks are large-scale with lack of access to centralized information, consist of users with diverse requirements, and are subject to dynamic changes. These factors naturally motivate a new distributed control paradigm, where the network infrastructure is kept simple and the network control functions are delegated to individual agents which make their decisions independently ("selfishly"). The interaction of multiple independent decision-makers necessitates the use of game theory, including economic notions related to markets and incentives. This monograph studies game theoretic models of resource allocation among selfish agents in networks. The first part of the monograph introduces fundamental game theoretic topics. Emphasis is given to the analysis of dynamics in game theoretic situations, which is crucial for design and control of networked systems. The second part of the monograph applies the game theoretic tools for the analysis of resource allocation in communication networks. We set up a general model of routing in wireline networks, emphasizing the congestion problems caused by delay and packet loss. In particular, we develop a systematic approach to characterizing the inefficiencies of network equilibria, and highlight the effect of autonomous service providers on network performance. We then turn to examining distributed power control in wireless networks. We show that the resulting Nash equilibria can be efficient if the degree of freedom given to end-users is properly designed. Table of Contents: Static Games and Solution Concepts / Game Theory Dynamics / Wireline Network Games / Wireless Network Games / Future Perspectives




Game Theory for Control of Optical Networks


Book Description

Optical networks epitomize complex communication systems, and they comprise the Internet’s infrastructural backbone. The first of its kind, this book develops the mathematical framework needed from a control perspective to tackle various game-theoretical problems in optical networks. In doing so, it aims to help design control algorithms that optimally allocate the resources of these networks. With its fresh problem-solving approach, Game Theory in Optical Networks is a unique resource for researchers, practitioners, and graduate students in applied mathematics and systems/control engineering, as well as those in electrical and computer engineering.




The Cooperative Game Theory of Networks and Hierarchies


Book Description

The book brings together an overview of standard concepts in cooperative game theory with applications to the analysis of social networks and hierarchical authority organizations. The standard concepts covered include the multi-linear extension, the Core, the Shapley value, and the cooperative potential. Also discussed are the Core for a restricted collection of formable coalitions, various Core covers, the Myerson value, value-based potentials, and share potentials. Within the context of social networks this book discusses the measurement of centrality and power as well as allocation rules such as the Myerson value and hierarchical allocation rules. For hierarchical organizations, two basic approaches to the exercise of authority are explored; for each approach the allocation of the generated output is developed. Each chapter is accompanied by a problem section, allowing this book to be used as a textbook for an advanced graduate course on game theory.




Game Theory in Communication Networks


Book Description

Focusing on heterogeneous networks, this book addresses important resource management and security issues found in networks and uses theoretical tools to model them. Although it explores network design and management from the perspective of game theory and graph theory, the text also provides practical solutions for each mechanism that needs improvement with a step-by-step approach. It also includes simulation code, so readers can use some or all of the proposed models for better network planning.




Social and Economic Networks in Cooperative Game Theory


Book Description

Social and Economic Networks in Cooperative Game Theory presents a coherent overview of theoretical literature that studies the influence and formation of networks in social and economic situations in which the relations between participants who are not included in a particular participant's network are not of consequence to this participant. The material is organized in two parts. In Part I the authors concentrate on the question how network structures affect economic outcomes. Part II of the book presents the formation of networks by agents who engage in a network-formation process to be able to realize the possible gains from cooperation.




Game Theory for Wireless Communications and Networking


Book Description

This comprehensive technical guide explains game theory basics, architectures, protocols, security, models, open research issues, and cutting-edge advances and applications. Describing how to employ game theory in infrastructure-based wireless networks and multihop networks to reduce power consumption, it facilitates quick and easy reference to related optimization and algorithm methodologies. The book explains how to apply the game theoretic model to address resource allocation, congestion control, attacks, routing, energy management, packet forwarding, and MAC.