Gamma-ray Burst Observations at High-energy with the Fermi Large Area Telescope


Book Description

The Fermi Gamma-ray Space Telescope recently celebrated its two-years anniversary in space. With the Large Area Telescope (LAT), its main instrument onboard, Fermi opened a new era in high-energy astrophysics and in particular for the study of Gamma-Ray Bursts (GRBs), which are short flashes of -rays associated with the brightest and most distant events ever observed in our universe after the Big Bang. My thesis work focused primarily on the observations of this phenomenon with the LAT (20 MeV - 300 GeV) and the Gamma-ray Burst Monitor (10 keV - 40 MeV) onboard the Fermi satellite. After describing the procedure used for detection and analysis of LAT GRBs, I will provide an overview of the temporal and spectral features observed during the prompt emission of these events after one year and a half of operation for Fermi. GRBs can also be used as a tool to probe interesting physics. My focus will be on the detection of very high energy photons (typically above 10 GeV) associated with LAT GRBs and which were used to set significant constraints both on a possible violation of Lorentz invariance - which postulates that all observers measure exactly the same speed of light in vacuum, independently of photon energy - and on the Optical-Ultraviolet extragalactic background light in the Universe.







Gamma-ray Bursts


Book Description

Summarizes the current understanding of Astronomical gamma-ray bursts, short-lived flashes of high-energy radiation, which have eluded even a basic explanation for over twenty years, and describes directions for future research.




Proceedings of the Third Workshop on Science with the New Generation of High Energy Gamma-ray Experiments


Book Description

Introduction -- I. Detectors for high-energy gamma-rays. First results from the MAGIC experiment / D. Bastieri for the MAGIC collaboration. H.E.S.S. / P. Vincent for the H.E.S.S. collaboration. CANGAROO / M. Mori for the CANGAROO-II, III Team. The status of VERITAS / M.K. Daniel on behalf of the VERITAS collaboration. Gamma ray bursts: recent results obtained by the SWIFT mission / G. Chinearini on behalf of the SWIFT team. Functional tests and performance characterization during the assembly phase of the modules of the AGILE silicon tracker / M. Basset [und weitere]. Status of GLAST, the gamma-ray large-area space telescope / L. Rochester on behalf of the GLAST team. Status of the ARGO-YBJ experiment / P. Camarri for the ARGO-YBJ collaboration. Gamma Air Watch (GAW) - an imaging atmospheric Cherenkov telescope large with large field of view / T. Mineo [und weitere] -- II. Topics in fundamental physics. Frontiers of high energy cosmic rays / M. Pimenta. Measurement of cosmological parameters / A. Balbi. The present and the future of cosmology with gamma ray bursts / G. Ghirlanda, G. Ghisellini. Supersymmetry breaking, extra dimensions and neutralino dark matter / A.M. Lionetto. Dark matter at [symbol]-rays / L. Pieri. Populations of subhalos in cold dark matter halos / E. Bisesi -- III. Multiwavelength observations. WEBT multifrequency support to space observations / C.M. Raiteri and M. Villata for the WEBT collaboration. REM - The Remote Observatory for GRB et al. / E. Molinari on behalf of the REM/ROSS team. Planck-LFI: operation of the scientific ground segment / F. Pasian [und weitere]. INTEGRAL three years later / L. Foschini, G. Di Cocco, G. Malaguti. XMM observations of Geminga, PSR B1055-52 and PSR B0656+14: phase resolved spectroscopy as a tool to investigate the X-[symbol] connection / P.A. Caraveo [und weitere] -- IV. Poster session. Software time-calibration of the ARGO-YBJ detector / A.K. Calabrese Melcarne for the ARGO-YBJ collaboration. Gamma-ray burst physics with GLAST / N. Omodei. Observations of blazars and EGRET sources with INTEGRAL / V. Vitale [und weitere]. A third level trigger programmable on FPGA for the gamma/hadron separation in a Cherenkov telescope using Pseudo-Zernike moments and the SVM classifier / M. Frailis [und weitere]. PulsarSpectrum: simulating gamma-ray pulsars for the GLAST mission / M. Razzano [und weitere]




Gamma-Ray Bursts


Book Description

Since their discovery was first announced in 1973, gamma-ray bursts (GRBs) have been among the most fascination objects in the universe. While the initial mystery has gone, the fascination continues, sustained by the close connection linking GRBs with some of the most fundamental topics in modern astrophysics and cosmology. Both authors have been active in GRB observations for over two decades and have produced an outstanding account on both the history and the perspectives of GRB research.




Gamma-ray Bursts: Prospects for GLAST


Book Description

This volume contains the proceedings from a symposium on gamma-ray bursts (GRBs) held in Stockholm, Sweden, in September 2006. All papers have been peer reviewed. The gamma-ray Large Area Space Telescope (GLAST) is an international mission dedicated to observations of high-energy gamma-rays and is planned to be launched by the end of 2007.




Gamma-Ray Bursts: 15 Years of GRB Afterglows


Book Description

Gamma-ray bursts (GRB) are amongst the most energetic phenomena in the Universe. In 1997 (more than 15 years ago), BeppoSAX allowed the detection of the first GRB X-ray afterglow, leading to the detection of afterglows at other wavelengths (optical, radio) in the following years, probing the cosmological distance scale. There are still many other open issues which still need to be addressed, regarding both theoretical and observational aspects: prompt emission and afterglow physics, progenitors (including Pop III stars), host galaxies, multi-messenger information, etc.




Astronomy with Radioactivities


Book Description

This book introduces the reader to the field of nuclear astrophysics, i.e. the acquisition and reading of measurements on unstable isotopes in different parts of the universe. The authors explain the role of radioactivities in astrophysics, discuss specific sources of cosmic isotopes and in which special regions they can be observed. More specifically, the authors address stars of different types, stellar explosions which terminate stellar evolutions, and other explosions triggered by mass transfers and instabilities in binary stars. They also address nuclear reactions and transport processes in interstellar space, in the contexts of cosmic rays and of chemical evolution. A special chapter is dedicated to the solar system which even provides material samples. The book also contains a description of key tools which astrophysicists employ in those particular studies and a glossary of key terms in astronomy with radioactivities.




Stellar Collapse


Book Description

Supernovae, hypernovae and gamma-ray bursts are among the most energetic explosions in the universe. The light from these outbursts is, for a brief time, comparable to billions of stars and can outshine the host galaxy within which the explosions reside. Most of the heavy elements in the universe are formed within these energetic explosions. Surprisingly enough, the collapse of massive stars is the primary source of not just one, but all three of these explosions. As all of these explosions arise from stellar collapse, to understand one requires an understanding of the others. Stellar Collapse marks the first book to combine discussions of all three phenomena, focusing on the similarities and differences between them. Designed for graduate students and scientists newly entering this field, this book provides a review not only of these explosions, but the detailed physical models used to explain them from the numerical techniques used to model neutrino transport and gamma-ray transport to the detailed nuclear physics behind the evolution of the collapse to the observations that have led to these three classes of explosions.




Science With The Cherenkov Telescope Array


Book Description

This book summarizes the science to be carried out by the upcoming Cherenkov Telescope Array, a major ground-based gamma-ray observatory that will be constructed over the next six to eight years. The major scientific themes, as well as core program of key science projects, have been developed by the CTA Consortium, a collaboration of scientists from many institutions worldwide.CTA will be the major facility in high-energy and very high-energy photon astronomy over the next decade and beyond. CTA will have capabilities well beyond past and present observatories. Thus, CTA's science program is expected to be rich and broad and will complement other major multiwavelength and multimessenger facilities. This book is intended to be the primary resource for the science case for CTA and it thus will be of great interest to the broader physics and astronomy communities. The electronic version (e-book) is available in open access.