Gamma Rays: Study of Electromagnetic Radiation


Book Description

This is an insightful book based on the study of electromagnetic radiations. It throws light on the characteristics and nature of gamma radiations. It also highlights the various options of gamma radiation application in fields like nuclear physics, industrial procedures, environmental science, radiation biology, radiation chemistry, agriculture and forestry, sterilization and food industry. Analysis of the pros and cons of functioning of these applications has also been discussed. The book mainly targets anyone who are engaged in any field related to gamma radiations, ranging from industrial workers and biologists to dentists and engineers and even those people who have a fascination towards this subject. Moreover, this book can also be used as a guide for diverse readers who are interested in the subject.




Invisible Universe


Book Description

The 5 class sessions, of 45-60 minutes each, deepen student understanding of the electromagnetic spectrum, enabling students to detect and consider wavelengths other than visible light. Activities feature energy stations, including infrared (TV remote); microwave (pager); ultraviolet (black light) and other devices. Students come up with their own tests to see what blocks each wavelength, and what does not. They learn how these other wavelengths can be used to "see" things we cannot see with our eyes.




Very High Energy Cosmic Gamma Radiation


Book Description

Gamma ray astronomy, the branch of high energy astrophysics that studies the sky in energetic ?-ray photons, is destined to play a crucial role in the exploration of nonthermal phenomena in the Universe in their most extreme and violent forms. The great potential of this discipline offers impressive coverage of many OC hot topicsOCO of modern astrophysics and cosmology, such as the origin of galactic and extragalactic cosmic rays, particle acceleration and radiation processes under extreme astrophysical conditions, and the search for dark matter."




Tour of the Electromagnetic Spectrum


Book Description




Waves: A Very Short Introduction


Book Description

We live in a world of waves. The Earth shakes to its foundations, the seas and oceans tremble incessantly, sounds reverberate through land, sea, and air. Beneath the skin, our brains and bodies are awash with waves of their own, and the Universe is filled by a vast spectrum of electromagnetic radiation, of which visible light is the narrowest sliver. Casting the net even wider, there are mechanical waves, quantum wave phenomena, and the now clearly detected gravitational waves. Look closer and deeper and more kinds of waves appear, down to the most fundamental level of reality. This Very Short Introduction looks at all the main kinds of wave, their sources, effects, and uses. Mike Goldsmith discusses how wave motion results in a range of phenomena, from reflection, diffraction, interference, and polarization in the case of light waves to beats and echoes for sound. All waves, however different, share many of the same features, and, as Goldsmith shows, for all their complexities many of their behaviours are fundamentally simple. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.




Adverse Reproductive Outcomes in Families of Atomic Veterans


Book Description

Over the past several decades, public concern over exposure to ionizing radiation has increased. This concern has manifested itself in different ways depending on the perception of risk to different individuals and different groups and the circumstances of their exposure. One such group are those U.S. servicemen (the "Atomic Veterans" who participated in the atmospheric testing of nuclear weapons at the Nevada Test Site or in the Pacific Proving Grounds, who served with occupation forces in or near Hiroshima and Nagasaki, or who were prisoners of war in or near those cities at the time of, or shortly after, the atomic bombings. This book addresses the feasibility of conducting an epidemiologic study to determine if there is an increased risk of adverse reproductive outcomes in the spouses, children, and grandchildren of the Atomic Veterans.




What Are Gamma-Ray Bursts?


Book Description

A brief, cutting-edge introduction to the brightest cosmic phenomena known to science Gamma-ray bursts are the brightest—and, until recently, among the least understood—cosmic events in the universe. Discovered by chance during the cold war, these evanescent high-energy explosions confounded astronomers for decades. But a rapid series of startling breakthroughs beginning in 1997 revealed that the majority of gamma-ray bursts are caused by the explosions of young and massive stars in the vast star-forming cauldrons of distant galaxies. New findings also point to very different origins for some events, serving to complicate but enrich our understanding of the exotic and violent universe. What Are Gamma-Ray Bursts? is a succinct introduction to this fast-growing subject, written by an astrophysicist who is at the forefront of today's research into these incredible cosmic phenomena. Joshua Bloom gives readers a concise and accessible overview of gamma-ray bursts and the theoretical framework that physicists have developed to make sense of complex observations across the electromagnetic spectrum. He traces the history of remarkable discoveries that led to our current understanding of gamma-ray bursts, and reveals the decisive role these phenomena could play in the grand pursuits of twenty-first century astrophysics, from studying gravity waves and unveiling the growth of stars and galaxies after the big bang to surmising the ultimate fate of the universe itself. What Are Gamma-Ray Bursts? is an essential primer to this exciting frontier of scientific inquiry, and a must-read for anyone seeking to keep pace with cutting-edge developments in physics today.




Imaging with Electromagnetic Spectrum


Book Description

This book demonstrates how imaging techniques, applying different frequency bands from the electromagnetic spectrum, are used in scientific research. Illustrated with numerous examples this book is structured according to the different radiation bands: From Gamma-rays over UV and IR to radio frequencies. In order to ensure a clear understanding of the processing methodologies, the text is enriched with descriptions of how digital images are formed, acquired, processed and how to extract information from them. A special emphasis is given to the application of imaging techniques in food and agriculture research.




Electromagnetic Technologies in Food Science


Book Description

A comprehensive source of in-depth information provided on existing and emerging food technologies based on the electromagnetic spectrum Electromagnetic Technologies in Food Science examines various methods employed in food applications that are based on the entire electromagnetic (EM) spectrum. Focusing on recent advances and challenges in food science and technology, this is an up-to-date volume that features vital contributions coming from an international panel of experts who have shared both fundamental and advanced knowledge of information on the dosimetry methods, and on potential applications of gamma irradiation, electron beams, X-rays, radio and microwaves, ultraviolet, visible, pulsed light, and more. Organized into four parts, the text begins with an accessible overview of the physics of the electromagnetic spectrum, followed by discussion on the application of the EM spectrum to non-thermal food processing. The physics of infrared radiation, microwaves, and other advanced heating methods are then deliberated in detail—supported by case studies and examples that illustrate a range of both current and potential applications of EM-based methods. The concluding section of the book describes analytical techniques adopted for quality control, such as hyperspectral imaging, infrared and Raman spectroscopy. This authoritative book resource: Covers advanced theoretical knowledge and practical applications on the use of EM spectrum as novel methods in food processing technology Discusses the latest progress in developing quality control methods, thus enabling the control of continuous fast-speed processes Explores future challenges and benefits of employing electromagnetic spectrum in food technology applications Addresses emerging processing technologies related to improving safety, preservation, and overall quality of various food commodities Electromagnetic Technologies in Food Science is an essential reading material for undergraduate and graduate students, researchers, academics, and agri-food professionals working in the area of food preservation, novel food processing techniques and sustainable food production.




Applications of Electromagnetic Waves


Book Description

Electromagnetic (EM) waves carry energy through propagation in space. This radiation associates with entangled electric and magnetic fields which must exist simultaneously. Although all EM waves travel at the speed of light in vacuum, they cover a wide range of frequencies called the EM spectrum. The various portions of the EM spectrum are referred to by various names based on their different attributes in the emission, transmission, and absorption of the corresponding waves and also based on their different practical applications. There are no certain boundaries separating these various portions, and the ranges tend to overlap. Overall, the EM spectrum, from the lowest to the highest frequency (longest to shortest wavelength) contains the following waves: radio frequency (RF), microwaves, millimeter waves, terahertz, infrared, visible light, ultraviolet, X-rays, and gamma rays. This Special Issue consists of sixteen papers covering a broad range of topics related to the applications of EM waves, from the design of filters and antennas for wireless communications to biomedical imaging and sensing and beyond.