Gas Chromatography Mass Spectrometry Applications in Microbiology


Book Description

During recent years there has been increasing interest in the value of a number of chemical and physical-chemical analytical methods for the detection and characterization of microorganisms. Furthermore, such methods are currently used in studies on microbial metabolic processes, on the role of microorganisms in the turnover of inorganic and organic compounds, and on the impact on environmental changes by microbial activity. Moreover, the introduction of some of these methods not only shortens the analytical time period compared to ·'traditional" techniques, but also improves the analytical quality. Mass spectrometry (MS) combined with chromatographic inlet systems, particularly gas chromatography (GC), belongs to those methods which during recent years have established their value for the above-mentioned purposes. The present volume starts with basic chapters on the principles for MS and common inlet systems, particulary Gc. It discusses applications of these techniques to a number of microbiological disciplines, e.g., ecologi cal and medical microbiology. Emphasis is laid on organic compound classes vii viii / PREFACE of special relevance to microbiology, e.g., volatiles, lipids, amino acids, peptides and carbohydrates. Some compound classes of a more general biochemical rather than specific microbiological importance, e.g., steroids and nucleotides, are dealt with briefly. The editors wish to thank all those who have contributed to this book. We hope it will stimulate further research in this futuristic field and will be of practical value.




Mass Spectrometry


Book Description

This book offers a balanced mixture of practice-oriented information and theoretical background as well as numerous references, clear illustrations, and useful data tables. Problems and solutions are accessible via a special website. This new edition has been completely revised and extended; it now includes three new chapters on tandem mass spectrometry, interfaces for sampling at atmospheric pressure, and inorganic mass spectrometry.




The Encyclopedia of Mass Spectrometry, Ten-Volume Set


Book Description

Overview: The Encyclopedia of Mass Spectrometry The need for an encyclopedia of mass spectrometry (MS) becomes apparent when considering the subject's evolution. By 1990, MS had evolved as a discipline and as a technique for solving problems in chemistry. Along with nuclear magnetic resonance and optical spectroscopy, it was a tool for compound identification. For complex mixtures as found in environmental chemistry, flavors, energy materials, and small-molecule metabolism, gas chromatography-mass spectrometry had become the premier analytical method. Despite these advances, MS played in 1990 only a small role in polar and large-molecule analysis. Field desorption, fast atom bombardment, and Cf-252 plasma desorption gently pushed it into peptide sequencing and molecular weight determination of larger polymers. Although these ionizations had limitations, when they were coupled with tandem mass spectrometers, the future became clearer. MS now awaited the development of new ionization methods that would extend its capabilities into many different research laboratories. The inventions of electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI) in the late 1980s opened the door for that greater role. Even the discipline of MS could expand by embracing the chemical-physical studies of proteins and oligodeoxynucleotides in the gas phase. The broad applicability of MS to a multitude of chemical, physical, and biological problems makes it now the central tool in chemical analysis. No longer a specialist's tool, it has assumed broad applicability and availability. To permit a full and fruitful expansion in other disciplines, the Encyclopedia of Mass Spectrometry is designed to be a learning tool to newcomers who do not have the theoretical and practical background needed to take advantage of the possibilities of MS. Moreover, the field is now so broad that the specialist also needs a resource to allow exploration of its vast reaches. The encyclopedia meets that need and strives to be an entrance into the subject and to serve as its major reference work. Volume 1: Theory and Ion Chemistry Volume 1 begins with two theory chapters. The first discusses theoretical aspects of ion collisions, chemistry, and dynamics, and the second introduces ab initio calculations of ions. The latter has become a nearly indispensable tool in ion chemistry studies today. Instrumentation is essential in fundamental investigations. Chapter 3 introduces instrumentation, with an emphasis on unusual instrumentation, generally not commercially available. Ion traps, ion cyclotron resonance mass spectrometers, and time-of-flight instruments, which are important in both fundamental studies and in applications, are also covered. Chapter 4 discusses myriad means of performing spectroscopic experiments on ions. In the next chapter, various methods of measuring thermodynamic information about ions are introduced and evaluated. Collisional activation and dissociation processes, in various incarnations, are in Chapter 6. Mobility experiments are the focus of the next chapter, which covers fundamental aspects and applications of this rapidly growing technology. Various means and uses of changing charge states of ions is the topic of chapter 8. Chapters 9 and 10 introduce the ion chemistry of organic ions, positive and negative, respectively. The last three chapters (Chapter 11-13) are expositions of the ion chemistry of clusters and solvation phenomena, inorganic chemistry, and the rapidly expanding area of biochemistry. Volume 2: Biological Applications Part A The focus of Volume 2 is peptides and proteins. The organization emphasizes separation techniques, preparation protocols, and fundamentals of ionic gas-phase species of biological importance. This volume is divided into four sections: (1) experimental approaches and protocols, (2) sequence analysis, (3) other structural analyses, and (4) targeted applications. The first section encompass separation procedures (e.g., 2-D gel electrophoresis), sample preparation (e.g., desalting and enzyme digestion), and instrumentation issues (e.g., high resolving power, molecular-weight determination, protein chips, and quantification). H/D exchange, analysis of membrane proteins, and bioinformatics are included. The next section on sequencing covers high energy and low energy CAD, protein identification, fundamentals of peptide fragmentation, bottom-up and top-down strategies, chemical derivatization, and post-source decay with MALDI. A section on structure analysis includes primary structure determination and issues with studying quaternary structure, protein-protein and protein-ligand complexes, disulfide analysis, phosphopeptides and phosphoproteins, selenoproteins, nitrated proteins, metal ion binding, and oxidized proteins. Additional coverage of methods for studying the biophysics of proteins is provided in Volume 6. The last chapter, Targeted Applications, focuses on neuropeptides, clinical applications, enzyme kinetics, imaging, and single-cell analysis. Volume 3: Biological Applications Part B Over the past decades, enormous gains have been made towards the analysis of all the biomolecules in cells. Although early attention was focused on peptides and proteins, a wealth of information is arising about other major biomolecules including nucleic acids, lipids and carbohydrates. In no small way, modern ionization methods, especially electrospray and matrix-assisted laser desorption, have provided a quantum leap in the capabilities of the tools we can now deploy in answering biological questions involving structure and molecular weight of virtually every type of molecule in the cell. Volume 3 covers classes carbohydrates, nucleic acids, and lipids. In addition, special areas of application are also included, such as pharmaceuticals, natural products, isotope ratio methods for biomolecules analysis, and clinical applications. The articles are arranged under general headings for continuity and ease of access, although several of these are of interest across the various disciplines. The articles cover basics and sufficient additional detail to bring the reader up-to-date on a given subject. Some advanced topics are also covered, either in a special section of an article or in additional reading citations. Volume 4: Organic and Organometallic Compounds This volume presents a cross section of applications in organic and organometallic chemistry in two parts. Chapters 1 to 6 are devoted to the fundamentals whereas chapters 7 and 8 cover applications to organic and organometallic compounds, either available as pure compounds or present in complex mixtures. Chapter 1 describes the theory for organic mass spectrometry, building on and complementing material in Volume 1. The themes for Chapter 2 are the structures and properties of gas-phase ions of conventional, distonic, and non-covalent complexes. Chapter 3 covers methodology used in study of gas-phase ions. Chapters 4 and 5 turn to mechanisms of both unimolecular and bimolecular reactions of ions and include topics in stereochemistry and radical chemistry. Chapter 6 contains a number of articles on the formation and reactivity of metal ion complexes and organometallic cations and anions, drawing connections with molecular recognition, catalysis and organic synthesis. Chapter 7 deals with the structure determination of organic compounds, including chiral compounds and natural products. In chapter 8 are contributions that provide illustrative examples of the determination of organic compounds present at low levels in complex samples that originate from various natural and biological sources. Included is an article on the determination of explosives. Volume 5: Elemental and Isotope Ratio Mass Spectrometry This volume focuses on (1) the plethora of mostly atomic ionization techniques that have been coupled to MS for elemental analysis, the measurement of isotope ratios, and even the determination of inorganic compounds and (2) the precise measurement of isotope ratios of organic elements as small gas molecules by isotope ratio mass spectrometry (IRMS). Volume 6: Ionization Methods Volume 6 captures the story of molecular ionization and its phenomenal evolution that makes mass spectrometry the powerful method it is today. Chapters 1 and 2 cover fundamentals and various issues that are common to all ionization (e.g., accurate mass, isotope clusters, and derivatization). Chapters 3-9 acknowledge that some ionization methods are appropriate for gas-phase molecules and others for molecules that are in the solid or liquid states. Chapters 3-6 cover gas-phase molecules, dividing the subject into: (1) ionization of gas-phase molecules by particles (e.g., EI), (2) ionization by photons, (3) ionization by ion-molecule and molecule-molecule reactions (e.g., APCI and DART), and ionization in Strong electric fields (i.e., Electrohydrodynamic and Field Ionization/Desorption). "Ionization in a Strong Electric Field" illustrates the transition to ionization of molecules in the solid or liquid states, covered in Chapters 7-9: (1) spray methods for ionization (e.g., electrospray), (2) desorption ionization by particle bombardment (e.g., FAB), and (3) desorption by photons (e.g., MALDI). Electrospray and MALDI also lead to applications in biophysical chemistry, the theme of Chapter 10. Chapter 11 reconsiders ionization from the view of choosing an ionization method. The range of subjects is from ionization of organic and biomolecules to the study of microorganisms. Volume 7: Mass Analyzers The volume is under preparation Volume 8: Hyphenated Methods Starting with gas chromatography-mass spectrometry (GC-MS) and continuing through GCxGC-MS, LC-MSn, and LC-NMR-MS, hyphenated methods have revolutionized chemical analysis. This volume covers that revolution in two parts. The first (Chapters 1-4) describes principles, instrumentation, and technology, and the second (Chapters 5-10) organizes major application areas in GC-MS and LC-MS. After a general introduction (Chapter 1), attention is paid to principles and instrumentation of GC-MS (Chapter 2) and LC-MS (Chapter 3). Other hyphenated methods, including online combinations of capillary electromigration methods and supercritical fluid chromatography with mass spectrometry, are in Chapter 4. Applications are then covered in the remaining chapters. The application-oriented chapters are focused on the role of mainly LC-MS in the pharmaceutical field (Chapter 5) and biochemical and biotechnological applications (Chapter 10), and the application of both GC-MS and LC-MS in relation to environmental analysis (Chapter 6), food safety and food analysis (Chapter 7), characterization of natural products (Chapter 8), and clinical, toxicological, and forensic analysis (Chapter 9). Volume 9: History of Mass Spectrometry This volume is under preparation. Volume 10: Index This multi-volume work is the first to provide unparalleled and comprehensive coverage of the full range of topics and techniques Suitable for new graduate students who are interested but not yet versed in the subject of mass spectrometry Techniques, methods and applications of mass spectrometry are described in considerable detail; including limitations, current problems, and areas in which the method does not succeed well




The Encyclopedia of Mass Spectrometry, Ten-Volume Set


Book Description

Overview: The Encyclopedia of Mass Spectrometry The need for an encyclopedia of mass spectrometry (MS) becomes apparent when considering the subject's evolution. By 1990, MS had evolved as a discipline and as a technique for solving problems in chemistry. Along with nuclear magnetic resonance and optical spectroscopy, it was a tool for compound identification. For complex mixtures as found in environmental chemistry, flavors, energy materials, and small-molecule metabolism, gas chromatography-mass spectrometry had become the premier analytical method. Despite these advances, MS played in 1990 only a small role in polar and large-molecule analysis. Field desorption, fast atom bombardment, and Cf-252 plasma desorption gently pushed it into peptide sequencing and molecular weight determination of larger polymers. Although these ionizations had limitations, when they were coupled with tandem mass spectrometers, the future became clearer. MS now awaited the development of new ionization methods that would extend its capabilities into many different research laboratories. The inventions of electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI) in the late 1980s opened the door for that greater role. Even the discipline of MS could expand by embracing the chemical-physical studies of proteins and oligodeoxynucleotides in the gas phase. The broad applicability of MS to a multitude of chemical, physical, and biological problems makes it now the central tool in chemical analysis. No longer a specialist's tool, it has assumed broad applicability and availability. To permit a full and fruitful expansion in other disciplines, the Encyclopedia of Mass Spectrometry is designed to be a learning tool to newcomers who do not have the theoretical and practical background needed to take advantage of the possibilities of MS. Moreover, the field is now so broad that the specialist also needs a resource to allow exploration of its vast reaches. The encyclopedia meets that need and strives to be an entrance into the subject and to serve as its major reference work. Volume 1: Theory and Ion Chemistry Volume 1 begins with two theory chapters. The first discusses theoretical aspects of ion collisions, chemistry, and dynamics, and the second introduces ab initio calculations of ions. The latter has become a nearly indispensable tool in ion chemistry studies today. Instrumentation is essential in fundamental investigations. Chapter 3 introduces instrumentation, with an emphasis on unusual instrumentation, generally not commercially available. Ion traps, ion cyclotron resonance mass spectrometers, and time-of-flight instruments, which are important in both fundamental studies and in applications, are also covered. Chapter 4 discusses myriad means of performing spectroscopic experiments on ions. In the next chapter, various methods of measuring thermodynamic information about ions are introduced and evaluated. Collisional activation and dissociation processes, in various incarnations, are in Chapter 6. Mobility experiments are the focus of the next chapter, which covers fundamental aspects and applications of this rapidly growing technology. Various means and uses of changing charge states of ions is the topic of chapter 8. Chapters 9 and 10 introduce the ion chemistry of organic ions, positive and negative, respectively. The last three chapters (Chapter 11-13) are expositions of the ion chemistry of clusters and solvation phenomena, inorganic chemistry, and the rapidly expanding area of biochemistry. Volume 2: Biological Applications Part A The focus of Volume 2 is peptides and proteins. The organization emphasizes separation techniques, preparation protocols, and fundamentals of ionic gas-phase species of biological importance. This volume is divided into four sections: (1) experimental approaches and protocols, (2) sequence analysis, (3) other structural analyses, and (4) targeted applications. The first section encompass separation procedures (e.g., 2-D gel electrophoresis), sample preparation (e.g., desalting and enzyme digestion), and instrumentation issues (e.g., high resolving power, molecular-weight determination, protein chips, and quantification). H/D exchange, analysis of membrane proteins, and bioinformatics are included. The next section on sequencing covers high energy and low energy CAD, protein identification, fundamentals of peptide fragmentation, bottom-up and top-down strategies, chemical derivatization, and post-source decay with MALDI. A section on structure analysis includes primary structure determination and issues with studying quaternary structure, protein-protein and protein-ligand complexes, disulfide analysis, phosphopeptides and phosphoproteins, selenoproteins, nitrated proteins, metal ion binding, and oxidized proteins. Additional coverage of methods for studying the biophysics of proteins is provided in Volume 6. The last chapter, Targeted Applications, focuses on neuropeptides, clinical applications, enzyme kinetics, imaging, and single-cell analysis. Volume 3: Biological Applications Part B Over the past decades, enormous gains have been made towards the analysis of all the biomolecules in cells. Although early attention was focused on peptides and proteins, a wealth of information is arising about other major biomolecules including nucleic acids, lipids and carbohydrates. In no small way, modern ionization methods, especially electrospray and matrix-assisted laser desorption, have provided a quantum leap in the capabilities of the tools we can now deploy in answering biological questions involving structure and molecular weight of virtually every type of molecule in the cell. Volume 3 covers classes carbohydrates, nucleic acids, and lipids. In addition, special areas of application are also included, such as pharmaceuticals, natural products, isotope ratio methods for biomolecules analysis, and clinical applications. The articles are arranged under general headings for continuity and ease of access, although several of these are of interest across the various disciplines. The articles cover basics and sufficient additional detail to bring the reader up-to-date on a given subject. Some advanced topics are also covered, either in a special section of an article or in additional reading citations. Volume 4: Organic and Organometallic Compounds This volume presents a cross section of applications in organic and organometallic chemistry in two parts. Chapters 1 to 6 are devoted to the fundamentals whereas chapters 7 and 8 cover applications to organic and organometallic compounds, either available as pure compounds or present in complex mixtures. Chapter 1 describes the theory for organic mass spectrometry, building on and complementing material in Volume 1. The themes for Chapter 2 are the structures and properties of gas-phase ions of conventional, distonic, and non-covalent complexes. Chapter 3 covers methodology used in study of gas-phase ions. Chapters 4 and 5 turn to mechanisms of both unimolecular and bimolecular reactions of ions and include topics in stereochemistry and radical chemistry. Chapter 6 contains a number of articles on the formation and reactivity of metal ion complexes and organometallic cations and anions, drawing connections with molecular recognition, catalysis and organic synthesis. Chapter 7 deals with the structure determination of organic compounds, including chiral compounds and natural products. In chapter 8 are contributions that provide illustrative examples of the determination of organic compounds present at low levels in complex samples that originate from various natural and biological sources. Included is an article on the determination of explosives. Volume 5: Elemental and Isotope Ratio Mass Spectrometry This volume focuses on (1) the plethora of mostly atomic ionization techniques that have been coupled to MS for elemental analysis, the measurement of isotope ratios, and even the determination of inorganic compounds and (2) the precise measurement of isotope ratios of organic elements as small gas molecules by isotope ratio mass spectrometry (IRMS). Volume 6: Ionization Methods Volume 6 captures the story of molecular ionization and its phenomenal evolution that makes mass spectrometry the powerful method it is today. Chapters 1 and 2 cover fundamentals and various issues that are common to all ionization (e.g., accurate mass, isotope clusters, and derivatization). Chapters 3-9 acknowledge that some ionization methods are appropriate for gas-phase molecules and others for molecules that are in the solid or liquid states. Chapters 3-6 cover gas-phase molecules, dividing the subject into: (1) ionization of gas-phase molecules by particles (e.g., EI), (2) ionization by photons, (3) ionization by ion-molecule and molecule-molecule reactions (e.g., APCI and DART), and ionization in Strong electric fields (i.e., Electrohydrodynamic and Field Ionization/Desorption). "Ionization in a Strong Electric Field" illustrates the transition to ionization of molecules in the solid or liquid states, covered in Chapters 7-9: (1) spray methods for ionization (e.g., electrospray), (2) desorption ionization by particle bombardment (e.g., FAB), and (3) desorption by photons (e.g., MALDI). Electrospray and MALDI also lead to applications in biophysical chemistry, the theme of Chapter 10. Chapter 11 reconsiders ionization from the view of choosing an ionization method. The range of subjects is from ionization of organic and biomolecules to the study of microorganisms. Volume 7: Mass Analyzers The volume is under preparation Volume 8: Hyphenated Methods Starting with gas chromatography-mass spectrometry (GC-MS) and continuing through GCxGC-MS, LC-MSn, and LC-NMR-MS, hyphenated methods have revolutionized chemical analysis. This volume covers that revolution in two parts. The first (Chapters 1-4) describes principles, instrumentation, and technology, and the second (Chapters 5-10) organizes major application areas in GC-MS and LC-MS. After a general introduction (Chapter 1), attention is paid to principles and instrumentation of GC-MS (Chapter 2) and LC-MS (Chapter 3). Other hyphenated methods, including online combinations of capillary electromigration methods and supercritical fluid chromatography with mass spectrometry, are in Chapter 4. Applications are then covered in the remaining chapters. The application-oriented chapters are focused on the role of mainly LC-MS in the pharmaceutical field (Chapter 5) and biochemical and biotechnological applications (Chapter 10), and the application of both GC-MS and LC-MS in relation to environmental analysis (Chapter 6), food safety and food analysis (Chapter 7), characterization of natural products (Chapter 8), and clinical, toxicological, and forensic analysis (Chapter 9). Volume 9: History of Mass Spectrometry This volume is under preparation. Volume 10: Index * This multi-volume work is the first to provide unparalleled and comprehensive coverage of the full range of topics and techniques * Suitable for new graduate students who are interested but not yet versed in the subject of mass spectrometry * Techniques, methods and applications of mass spectrometry are described in considerable detail; including limitations, current problems, and areas in which the method does not succeed well




Gas Chromatography and Mass Spectrometry: A Practical Guide


Book Description

The second edition of Gas Chromatography and Mass Spectrometry: A Practical Guide follows the highly successful first edition by F.G. Kitson, B.S. Larsen, and C.N. McEwen (1996), which was designed as an indispensible resource for GC/MS practitioners regardless of whether they are a novice or well experienced. The Fundamentals section has been extensively reworked from the original edition to give more depth of an understanding of the techniques and science involved with GC/MS. Even with this expansion, the original brevity and simple didactic style has been retained. Information on chromatographic peak deconvolution has been added along with a more in-depth understanding of the use of mass spectral databases in the identification of unknowns. Since the last edition, a number of advances in GC inlet systems and sample introduction techniques have occurred, and they are included in the new edition. Other updates include a discussion on fast GC and options for combining GC detectors with mass spectrometry. The section regarding GC Conditions, Derivatization, and Mass Spectral Interpretation of Specific Compound Types has the same number of compound types as the original edition, but the information in each section has been expanded to not only explain some of the spectra but to also explain why certain fragmentations take place. The number of Appendices has been increased from 12 to 17. The Appendix on Atomic Masses and Isotope Abundances has been expanded to provide tools to aid in determination of elemental composition from isotope peak intensity ratios. An appendix with examples on "Steps to follow in the determination of elemental compositions based on isotope peak intensities" has been added. Appendices on whether to use GC/MS or LC/MS, third-party software for use in data analysis, list of information required in reporting GC/MS data, X+1 and X+2 peak relative intensities based on the number of atoms of carbon in an ion, and list of available EI mass spectral databases have been added. Others such as the ones on derivatization, isotope peak patterns for ions with Cl and/or Br, terms used in GC and in mass spectrometry, and tips on setting up, maintaining and troubleshooting a GC/MS system have all been expanded and updated. - Covers the practical instruction necessary for successful operation of GC/MS equipment - Reviews the latest advances in instrumentation, ionization methods, and quantitation - Includes troubleshooting techniques and a variety of additional information useful for the GC/MS practitioner - A true benchtop reference - A guide to a basic understanding of the components of a Gas Chromatograph-Mass Spectrometer (GC-MS) - Quick References to data interpretation - Ready source for information on new analyses




Mass Spectrometry in Biotechnological Process Analysis and Control


Book Description

This book is based on the contributions to the IFAC-Workshop "Mass Spectro metry in Biotechnological Process Analysis and Control" held in Graz, Austria from 23 to 24 October 1986. The idea to organize this workshop and further to prepare these proceedings was stimulated by the following facts. Biotechnological processes urgently need better on-line instrumentation. Mass spectrometry (MS) offers a great potential to especially analyse gases and volatile compounds. It is, however, considered that this potential by far is not exhausted. The main reason for this is that MS often still is considered to be a very expensive technique requiring the permanent attention of a MS expert. In addition methods have not yet been developed to a user friendly state. On-line MS-methods are available to a certain extent, but need further development. To stimulate such development an interdisciplinary effort is necessary. Needs of industrial and university users and experience of physicists and instrument manufacturers have to be brought into a hopefully fruitful discussion. An introductory article describes the bioprocess background including a brief summary of the state of the art in bioprocess sensor and parameter estimation development, and the potential MS offers for bioprocess monitoring. In the first chapter on "Instrumentation and Gas Analysis" a general overview on some developments in MS-instrumentation is given initially by Schmid. Then the presently available instrumentation for bioprocess monitoring is discussed by instrument manufacturers (Winter; Schaefer and Schultis; Bartman).




Fundamentals of Contemporary Mass Spectrometry


Book Description

Modern mass spectrometry - the instrumentation and applications in diverse fields Mass spectrometry has played a pivotal role in a variety of scientific disciplines. Today it is an integral part of proteomics and drug discovery process. Fundamentals of Contemporary Mass Spectrometry gives readers a concise and authoritative overview of modern mass spectrometry instrumentation, techniques, and applications, including the latest developments. After an introduction to the history of mass spectrometry and the basic underlying concepts, it covers: Instrumentation, including modes of ionization, condensed phase ionization techniques, mass analysis and ion detection, tandem mass spectrometry, and hyphenated separation techniques Organic and inorganic mass spectrometry Biological mass spectrometry, including the analysis of proteins and peptides, oligosaccharides, lipids, oligonucleotides, and other biological materials Applications to quantitative analysis Based on proven teaching principles, each chapter is complete with a concise overview, highlighted key points, practice exercises, and references to additional resources. Hints and solutions to the exercises are provided in an appendix. To facilitate learning and improve problem-solving skills, several worked-out examples are included. This is a great textbook for graduate students in chemistry, and a robust, practical resource for researchers and scientists, professors, laboratory managers, technicians, and others. It gives scientists in diverse disciplines a practical foundation in modern mass spectrometry.




Theoretical Mass Spectrometry


Book Description

This book discusses fragmentation mechanisms of molecules under mass spectrometry conditions and the resulting peaks observed in ESI-MS/MS experiments. The underlying principles are used to understand everything from small molecules to biological poly-peptides collision induced dissociation. In a theoretical approach, gas phase reactivity of molecular ions is coupled with chemical dynamics simulations.




Mass Spectrometry of Organic Ions


Book Description

Mass Spectrometry of Organic Ions covers the underlying theories and major applications of mass spectrometry. This 13-chapter book starts with a survey of the mechanisms by which organic ions can decompose and rearrange, as well as the generalized concept in terms of physical-organic chemistry. The discussion then shifts to the advantages and potential of mass spectrometry in structure determination by the elucidation of the empirical formulas of organic ions. Considerable chapters are devoted to the detailed correlations and mechanisms of the mass spectra of long-chain esters, alkylbenzenes, a variety of natural products, aliphatic compounds, and terpenes. The remaining chapters demonstrate the illustrative power of mass spectrometry in structure of petroleum, which is composed of hydrocarbon mixture. This book will be of great benefit to organic and analytical chemists, scientists, and students.