Optimisation Techniques for Combustor Design


Book Description

For gas turbines, the demand for high-performance, more efficient and longer-life turbine blades is increasing. This is especially so, now that there is a need for high-power and low-weight aircraft gas turbines. Thus, the search for improved design methodologies for the optimisation of combustor exit temperature profiles enjoys high priority. Traditional experimental methods are found to be too time-consuming and costly, and they do not always achieve near-optimal designs. In addition to the above deficiencies, methods based on semi-empirical correlations are found to be lacking in performing three-dimensional analyses and these methods cannot be used for parametric design optimisation. Computational fluid dynamics has established itself as a viable alternative to reduce the amount of experimentation needed, resulting in a reduction in the time scales and costs of the design process. Furthermore, computational fluid dynamics provides more insight into the flow process, which is not available through experimentation only. However, the fact remains that, because of the trial-and-error nature of adjusting the parameters of the traditional optimisation techniques used in this field, the designs reached cannot be called optimum . The trial-and-error process depends a great deal on the skill and experience of the designer. Also, the above technologies inhibit the improvement of the gas turbine power output by limiting the highest exit temperature possible, putting more pressure on turbine blade cooling technologies. This limitation to technology can be overcome by implementing a search algorithm capable of finding optimal design parameters. Such an algorithm will perform an optimum search prior to computational fluid dynamics analysis and rig testing. In this thesis, an efficient methodology is proposed for the design optimisation of a gas turbine combustor exit temperature profile. The methodology involves the combination of computational fluid dynamics with a gradient-based mathematical optimiser, using successive objective and constraint function approximations (Dynamic-Q) to obtain the optimum design. The methodology is tested on three cases, namely: (a) The first case involves the optimisation of the combustor exit temperature profile with two design variables related to the dilution holes, which is a common procedure. The combustor exit temperature profile was optimised, and the pattern factor improved, but pressure drop was very high. (b) The second case involves the optimisation of the combustor exit temperature profile with four design variables, one equality constraint and one inequality constraint based on pressure loss. The combustor exit temperature profile was also optimised within the constraints of pressure. Both the combustor exit temperature profile and pattern factor were improved. (c) The third case involves the optimisation of the combustor exit temperature profile with five design variables. The swirler angle and primary hole parameters were included in order to allow for the effect of the central toroidal recirculation zone on the combustor exit temperature profile. Pressure loss was also constrained to a certain maximum. The three cases show that a relatively recent mathematical optimiser (Dynamic-Q), combined with computational fluid dynamics, can be considered a strong alternative to the design optimisation of a gas turbine combustor exit temperature profile. This is due to the fact that the proposed methodology provides designs that can be called near-optimal, when compared with that yielded by traditional methods and computational fluid dynamics alone.













A Parametric Investigation of Soot Behavior and Other Emissions in a Gas Turbine Combustor


Book Description

An investigation was conducted to determine the effects of operating characteristics and fuel additives in a gas turbine combustor on particulates (soot) and other gaseous emissions (NOx, NO). The principles of Mie theory and three-wavelength light transmittance have been utilized in this investigation to determine particulate size and mass concentration. Using an Allison T63 turboshaft engine combustor, five experimental fuels of varying chemical composition were analyzed from an emissions standpoint. There was no apparent relationship between particulate size and either fuel composition or combustor exhaust temperature. Nitric oxide levels were indifferent to fuel composition but did show a characteristics upward trend with exhaust temperature. Visible spectrum transmittance did indicate an inverse relation to increasing exhaust temperature. Though only two fuel additives were tested on one fuel, there was no manifestation of improved transmittance with their use.




Gas Turbine Combustor Analysis


Book Description

Presented at the ASME Winter Annual Meeting, New York, N.Y., Nov. 17-22, 1974.




The Gas Turbine Handbook


Book Description

The second edition of a bestseller, this comprehensive reference provides the fundamental information required to understand both the operation and proper application of all types of gas turbines. The completely updated second edition adds a new section on use of inlet cooling for power augmentation and NOx control. It explores the full spectrum of gas turbines hardware, typical application scenarios, and operating parameters, controls, inlet treatments, inspection, trouble-shooting, and more. The author discusses strategies that can help readers avoid problems before they occur and provides tips that enable diagnosis of problems in their early stages and analysis of failures to prevent their recurrence.




Gas Turbine Combustion


Book Description

Reflecting the developments in gas turbine combustion technology that have occurred in the last decade, Gas Turbine Combustion: Alternative Fuels and Emissions, Third Edition provides an up-to-date design manual and research reference on the design, manufacture, and operation of gas turbine combustors in applications ranging from aeronautical to po




Modelling Diesel Combustion


Book Description

Phenomenology of Diesel Combustion and Modeling Diesel is the most efficient combustion engine today and it plays an important role in transport of goods and passengers on land and on high seas. The emissions must be controlled as stipulated by the society without sacrificing the legendary fuel economy of the diesel engines. These important drivers caused innovations in diesel engineering like re-entrant combustion chambers in the piston, lower swirl support and high pressure injection, in turn reducing the ignition delay and hence the nitric oxides. The limits on emissions are being continually reduced. The- fore, the required accuracy of the models to predict the emissions and efficiency of the engines is high. The phenomenological combustion models based on physical and chemical description of the processes in the engine are practical to describe diesel engine combustion and to carry out parametric studies. This is because the injection process, which can be relatively well predicted, has the dominant effect on mixture formation and subsequent course of combustion. The need for improving these models by incorporating new developments in engine designs is explained in Chapter 2. With “model based control programs” used in the Electronic Control Units of the engines, phenomenological models are assuming more importance now because the detailed CFD based models are too slow to be handled by the Electronic Control Units. Experimental work is necessary to develop the basic understanding of the pr- esses.