Gauge Theory of Weak Decays


Book Description

This is the first advanced, systematic and comprehensive look at weak decays in the framework of gauge theories. Included is a large spectrum of topics, both theoretical and experimental. In addition to explicit advanced calculations of Feynman diagrams and the study of renormalization group strong interaction effects in weak decays, the book is devoted to the Standard Model Effective Theory, dominating present phenomenology in this field, and to new physics models with the goal of searching for new particles and interactions through quantum fluctuations. This book will benefit theorists, experimental researchers, and Ph.D. students working on flavour physics and weak decays as well as physicists interested in physics beyond the Standard Model. In its concern for the search for new phenomena at short distance scales through the interplay between theory and experiment, this book constitutes a travel guide to physics far beyond the scales explored by the Large Hadron Collider at CERN.




Gauge Theory of Weak Decays


Book Description

"The ultimate question of elementary particle physics is: What is the fundamental Lagrangian of nature surrounding us? The Lagrangian of the SM is very successful in describing nature at the currently available energy range. The discovery of the Higgs boson completed the particle spectrum of the SM and it is another proof of how well the SM works. Nevertheless the SM cannot be the end of the story and it is for sure not the fundamental Lagrangian of nature. The Lagrangian of the SM looses its validity at the latest at the Planck scale where gravitational effects become noticeable.Most physicists think of the SM as an effective theory that has to be replaced by a more fundamental theory above the TeV scale. What the word effective really means will hopefully be clear at later stages of our book. For the time being we will list some problems and open questions of the SM"--




Gauge Theory of Weak Interactions


Book Description

Gauge Theory of Weak Interactions treats the unification of electromagnetic and weak interactions and considers related phenomena. First, the Fermi theory of beta decay is presented, followed by a discussion of parity violation, clarifying the importance of symmetries. Then the concept of a spontaneously broken gauge theory is introduced, and all necessary mathematical tools are carefully developed. The "standard model" of unified electroweak interactions is thoroughly discussed including current developments. The final chapter contains an introduction to unified theories of strong and electroweak interactions. Numerous solved examples and problems make this volume uniquely suited as a text for an advanced course. Thisfourth edition has been carefully revised.




Gauge Theories of the Strong, Weak, and Electromagnetic Interactions


Book Description

A thoroughly revised edition of a landmark textbook on gauge theories and their applications to particle physics This completely revised and updated graduate-level textbook is an ideal introduction to gauge theories and their applications to high-energy particle physics, and takes an in-depth look at two new laws of nature—quantum chromodynamics and the electroweak theory. From quantum electrodynamics through unified theories of the interactions among leptons and quarks, Chris Quigg examines the logic and structure behind gauge theories and the experimental underpinnings of today's theories. Quigg emphasizes how we know what we know, and in the era of the Large Hadron Collider, his insightful survey of the standard model and the next great questions for particle physics makes for compelling reading. The brand-new edition shows how the electroweak theory developed in conversation with experiment. Featuring a wide-ranging treatment of electroweak symmetry breaking, the physics of the Higgs boson, and the importance of the 1-TeV scale, the book moves beyond established knowledge and investigates the path toward unified theories of strong, weak, and electromagnetic interactions. Explicit calculations and diverse exercises allow readers to derive the consequences of these theories. Extensive annotated bibliographies accompany each chapter, amplify points of conceptual or technical interest, introduce further applications, and lead readers to the research literature. Students and seasoned practitioners will profit from the text's current insights, and specialists wishing to understand gauge theories will find the book an ideal reference for self-study. Brand-new edition of a landmark text introducing gauge theories Consistent attention to how we know what we know Explicit calculations develop concepts and engage with experiment Interesting and diverse problems sharpen skills and ideas Extensive annotated bibliographies




Gauge Theories of Weak Interactions


Book Description

The interaction between neutrinos and matter is an example of the type classified as weak, and such interactions also allow many elementary particle decays and the beta decay of the nuclei. The development of gauge theories has provided the basis for a complete and consistent account of weak interactions, at the same time displaying their unity with electromagnetism. Gauge theories in this context were first proposed in 1967. Rapid mathematical development took place from 1971, and on this book's publication in 1979, a moderate amount of empirical verification had been achieved.




Weak Interactions and Modern Particle Theory


Book Description

A high-level, rigorous, and technical treatment of modern particle physics, this book was written by a well-known professor at Harvard University. In addition to its value as a text for advanced undergraduate and graduate students of physics, it also serves as a reference for professionals. 1984 edition.




An Introduction to Gauge Theories


Book Description

Written by world-leading experts in particle physics, this new book from Luciano Maiani and Omar Benhar, with contributions from the late Nicola Cabibbo, is based on Feynman’s path integrals. Key elements of gauge theories are described—Feynman diagrams, gauge-fixing, Faddeev-Popov ghosts—as well as renormalization in Quantum Electrodynamics. Quarks and QCD interactions are introduced. Renormalization group and high momentum behaviour of the coupling constants is discussed in QED and QCD, with asymptotic freedom derived at one-loop. These concepts are related to the Higgs boson and models of grand unification. "... an excellent introduction to the quantum theory of gauge fields and their applications to particle physics. ... It will be an excellent book for the serious student and a good reference for the professional practitioner. Let me add that, scattered through the pages, we can find occasional traces of Nicola Cabibbo's style." —John Iliopoulos, CNRS-Ecole Normale Supérieure " ... The volume ends with an illuminating description of the expectation generated by the recent discovery of the Higgs boson, combined with the lack of evidence for super-symmetric particles in the mass range 0.6-1 TeV." —Arturo Menchaca-Rocha, FinstP, Professor of Physics, Mexico’s National Autonomous University, Former President of the Mexican Academy of Sciences, Presidential Advisor "...The reader is masterfully guided through the subtleties of the quantum field theory and elementary particle physics from simple examples in Quantum Mechanics to salient details of modern theory." —Mikhail Voloshin, Professor of Physics, University of Minnesota




Particles, Fields, Quanta


Book Description

This book provides an introduction to the current state of our knowledge about the structure of matter. Gerhard Ecker describes the development of modern physics from the beginning of the quantum age to the standard model of particle physics, the fundamental theory of interactions of the microcosm. The focus lies on the most important discoveries and developments, e.g. of quantum field theory, gauge theories and the future of particle physics. The author also emphasizes the interplay between theory and experiment, which helps us to explore the deepest mysteries of nature. "Particles, Fields, Quanta" is written for everyone who enjoys physics. It offers high school graduates and students of physics in the first semesters an encouragement to understand physics more deeply. Teachers and others interested in physics will find useful insights into the world of particle physics. For advanced students, the book can serve as a comprehensive preparation for lectures on particle physics and quantum field theory. A brief outline of the mathematical structures, an index of persons with research focuses and a glossary for quick reference of important terms such as gauge theory, spin and symmetry complete the book. From the foreword by Michael Springer: “The great successes and the many open questions this book describes illustrate how immensely complicated nature is and nevertheless how much we already understand of it.” The author Gerhard Ecker studied theoretical physics with Walter Thirring at the University of Vienna. His research focus has been on theoretical particle physics, in particular during several long-term visits at CERN, the European Organisation for Nuclear Research in Geneva. In 1986 he was promoted to Professor of Theoretical Physics at the University of Vienna. Since 1977 he has given both basic lectures in theoretical physics and advanced courses on different topics in particle physics, e.g., quantum field theory, symmetry groups in particle physics and renormalisation in quantum field theory.




An Elementary Primer for Gauge Theory


Book Description

Gauge theory is now recognized as one of the most revolutionary discoveries in physics since the development of quantum mechanics. This primer explains how and why gauge theory has dramatically changed our view of the fundamental forces of nature. The text is designed for the non-specialist. A new, intuitive approach is used to make the ideas of gauge theory accessible to both scientists and students with only a background in quantum mechanics. Emphasis is placed on the physics rather than the formalism.




An Introduction to Gauge Theories and Modern Particle Physics


Book Description

A comprehensive treatment of modern theoretical and experimental particle physics, in two volumes.