Safety of Genetically Engineered Foods


Book Description

Assists policymakers in evaluating the appropriate scientific methods for detecting unintended changes in food and assessing the potential for adverse health effects from genetically modified products. In this book, the committee recommended that greater scrutiny should be given to foods containing new compounds or unusual amounts of naturally occurring substances, regardless of the method used to create them. The book offers a framework to guide federal agencies in selecting the route of safety assessment. It identifies and recommends several pre- and post-market approaches to guide the assessment of unintended compositional changes that could result from genetically modified foods and research avenues to fill the knowledge gaps.




Genetic Engineering of Plants


Book Description

"The book...is, in fact, a short text on the many practical problems...associated with translating the explosion in basic biotechnological research into the next Green Revolution," explains Economic Botany. The book is "a concise and accurate narrative, that also manages to be interesting and personal...a splendid little book." Biotechnology states, "Because of the clarity with which it is written, this thin volume makes a major contribution to improving public understanding of genetic engineering's potential for enlarging the world's food supply...and can be profitably read by practically anyone interested in application of molecular biology to improvement of productivity in agriculture."




Genetically Engineered Crops


Book Description

Genetically engineered (GE) crops were first introduced commercially in the 1990s. After two decades of production, some groups and individuals remain critical of the technology based on their concerns about possible adverse effects on human health, the environment, and ethical considerations. At the same time, others are concerned that the technology is not reaching its potential to improve human health and the environment because of stringent regulations and reduced public funding to develop products offering more benefits to society. While the debate about these and other questions related to the genetic engineering techniques of the first 20 years goes on, emerging genetic-engineering technologies are adding new complexities to the conversation. Genetically Engineered Crops builds on previous related Academies reports published between 1987 and 2010 by undertaking a retrospective examination of the purported positive and adverse effects of GE crops and to anticipate what emerging genetic-engineering technologies hold for the future. This report indicates where there are uncertainties about the economic, agronomic, health, safety, or other impacts of GE crops and food, and makes recommendations to fill gaps in safety assessments, increase regulatory clarity, and improve innovations in and access to GE technology.




Genetic Modification of Plants


Book Description

Conceived with the aim of sorting fact from fiction over genetically modified (GM) crops, this book brings together the knowledge of 30 specialists in the field of transgenic plants. It covers the generation and detection of these plants as well as the genetic traits conferred on transgenic plants. In addition, the book looks at a wide variety of crops, ornamental plants and tree species that are subject to genetic modifications, assessing the risks involved in genetic modification as well as the potential economic benefits of the technology in specific cases. The book’s structure, with fully cross-referenced chapters, gives readers a quick access to specific topics, whether that is comprehensive data on particular species of ornamentals, or coverage of the socioeconomic implications of GM technology. With an increasing demand for bioenergy, and the necessary higher yields relying on wider genetic variation, this book supplies all the technical details required to move forward to a new era in agriculture.




Plant Biotechnology


Book Description

Plant Biotechnology presents a balanced, objective exploration of the technology behind genetic manipulation, and its application to the growth and cultivation of plants. The book describes the techniques underpinning genetic manipulation and makes extensive use of case studies to illustrate how this influential tool is used in practice.




Genetic Engineering of Plants for Crop Improvement


Book Description

Genetic Engineering of Plants for Crop Improvement discusses current genetic engineering methods for plants and addresses the commercial opportunities for transgenic plants. Topics covered include Agrobacterium-mediated transformations, the use of electroporation, PEG-mediated transformation, microinjection, the microprojectile bombardment method, and the electrical discharge particle acceleration method. A concise account of the resistance of transgenic plants to insect attack, viral infection, and herbicides has also been provided. Possibilities for genetic manipulation for proteins that have superior nutritional properties are discussed, and a brief account of tests confirming the safety and commercial validity of transgenic plants is included. A valuable source of information for researchers and students in plant biotechnology, plant gene manipulation, molecular biology, and all areas of the life sciences.




Genome Engineering for Crop Improvement


Book Description

This book serves the teachers, researchers and the students as a handy and concise reference as well as guidebook while designing and planning for use of the advanced technologies for crop improvement. The content of the book is designed to cover the latest genome engineering techniques for crop improvement. The conventional breeding has got its limitations such as non-availability of desired genes within the genepool. In many cases, breeding has been highly used and it has nearly reached its highest limit so far as the productivity and production of crops are concerned. However, with increasing need of food and decreasing resources, including water, land, labour, etc., to feed the growing population, the alternative available ways of increasing crop productivity need to be explored and exploited. Genome engineering has a wide scope that includes technologies such as genetic engineering and transgenesis, RNA technologies, CRISPR, cisgenics and subgenics for better productivity and more efficient biotic and abiotic stress management. Therefore, the book is planned to enlighten the readers with the advanced technologies with examples and case studies, whenever possible. Efforts will be made to emphasize on general efforts on various major food crops; however, it would also be made clear that such efforts could be taken as proofs of concepts and that this could be extrapolated keeping the demand in mind.




Propagation and Genetic Manipulation of Plants


Book Description

Plant biotechnology has now become a key tool in improving crop productivity and enhancing commercial value of plant products. The book complies various methods of in vitro propagation and genetic manipulation of important aromatic and medicinal plants. It puts together latest techniques and innovations in the field of plant biotechnology such as effective protocols of genetic manipulation, isolation of secondary metabolites, use of somaclonal variation, stress management in plants. It also explores the role of various physiological and biochemical factors affecting the genetic stability of in-vitro cultured plants. These themes are of interest to both graduate and postgraduate students. Further this book will be useful for to researchers, academicians and industrialist to review latest progress and future prospects of these technologies.




Crop Improvement


Book Description

The improvement of crop species has been a basic pursuit since cultivation began thousands of years ago. To feed an ever increasing world population will require a great increase in food production. Wheat, corn, rice, potato and few others are expected to lead as the most important crops in the world. Enormous efforts are made all over the world to document as well as use these resources. Everybody knows that the introgression of genes in wheat provided the foundation for the “Green Revolution”. Later also demonstrated the great impact that genetic resources have on production. Several factors are contributing to high plant performance under different environmental conditions, therefore an effective and complementary use of all available technological tools and resources is needed to meet the challenge.




CRISPR and RNAi Systems


Book Description

Plants are vulnerable to pathogens including fungi, bacteria, and viruses, which cause critical problems and deficits. Crop protection by plant breeding delivers a promising solution with no obvious effect on human health or the local ecosystem. Crop improvement has been the most powerful approach for producing unique crop cultivars since domestication occurred, making possible the main innovations in feeding the globe and community development. Genome editing is one of the genetic devices that can be implemented, and disease resistance is frequently cited as the most encouraging application of CRISPR/Cas9 technology in agriculture. Nanobiotechnology has harnessed the power of genome editing to develop agricultural crops. Nanosized DNA or RNA nanotechnology approaches could contribute to raising the stability and performance of CRISPR guide RNAs. This book brings together the latest research in these areas. CRISPR and RNAi Systems: Nanobiotechnology Approaches to Plant Breeding and Protection presents a complete understanding of the RNAi and CRISPR/Cas9 techniques for controlling mycotoxins, fighting plant nematodes, and detecting plant pathogens. CRISPR/Cas genome editing enables efficient targeted modification in most crops, thus promising to accelerate crop improvement. CRISPR/Cas9 can be used for management of plant insects, and various plant pathogens. The book is an important reference source for both plant scientists and environmental scientists who want to understand how nano biotechnologically based approaches are being used to create more efficient plant protection and plant breeding systems. - Shows how nanotechnology is being used as the basis for new solutions for more efficient plant breeding and plant protection - Outlines the major techniques and applications of both CRISPR and RNAi technologies - Assesses the major challenges of escalating these technologies on a mass scale