Molecular Biology of B Cells


Book Description

Molecular Biology of B Cells, Second Edition is a comprehensive reference to how B cells are generated, selected, activated and engaged in antibody production. All of these developmental and stimulatory processes are described in molecular, immunological, and genetic terms to give a clear understanding of complex phenotypes. Molecular Biology of B Cells, Second Edition offers an integrated view of all aspects of B cells to produce a normal immune response as a constant, and the molecular basis of numerous diseases due to B cell abnormality. The new edition continues its success with updated research on microRNAs in B cell development and immunity, new developments in understanding lymphoma biology, and therapeutic targeting of B cells for clinical application. With updated research and continued comprehensive coverage of all aspects of B cell biology, Molecular Biology of B Cells, Second Edition is the definitive resource, vital for researchers across molecular biology, immunology and genetics. - Covers signaling mechanisms regulating B cell differentiation - Provides information on the development of therapeutics using monoclonal antibodies and clinical application of Ab - Contains studies on B cell tumors from various stages of B lymphocytes - Offers an integrated view of all aspects of B cells to produce a normal immune response




Janeway's Immunobiology


Book Description

The Janeway's Immunobiology CD-ROM, Immunobiology Interactive, is included with each book, and can be purchased separately. It contains animations and videos with voiceover narration, as well as the figures from the text for presentation purposes.




Molecular Analysis of B Lymphocyte Development and Activation


Book Description

The B lymphocyte lineage represents an important paradigm for exploring the molecular mechanisms underlying cell fate specification, differentiation and cellular activation. In the past five years, major advances have been achieved in our understanding of the transcriptional control of early B cell development and terminal plasma cell differentiation. In addition new insights became available for the processes of B cell activation, class switch recombination and somatic hypermutation. Many of the new findings and their implications for a molecular understanding of B cell biology in particular and cell differentiation in general are covered in this volume.




Molecular Mechanisms that Orchestrate the Assembly of Antigen Receptor Loci


Book Description

Molecular Mechanisms That Orchestrate the Assembly of Antigen Receptor Loci, the latest volume in the Advances in Immunology series focuses on the generation of an effective immune response to invading pathogens As B and T lymphocytes are characterized by the expression of antigen receptors that specifically recognize determinants expressed on pathogens, this volume discusses how antigen receptors are synthesized in B and T lymphocytes. - Focuses on the generation of an effective immune response to invading pathogens - Contains contributions from leading authorities - Informs and updates on all the latest developments in the field of immunology




Angiogenesis in Brain Tumors


Book Description

- Volume is divided into four sections, allowing easy navagation for researchers and practicing physicians - Text includes clinical trials - Written by leaders in the field




Molecular Biology of B Cells


Book Description

Molecular Biology of B Cells, Second Edition is a comprehensive reference to how B cells are generated, selected, activated and engaged in antibody production. All of these developmental and stimulatory processes are described in molecular, immunological, and genetic terms to give a clear understanding of complex phenotypes. Molecular Biology of B Cells, Second Edition offers an integrated view of all aspects of B cells to produce a normal immune response as a constant, and the molecular basis of numerous diseases due to B cell abnormality. The new edition continues its success with updated research on microRNAs in B cell development and immunity, new developments in understanding lymphoma biology, and therapeutic targeting of B cells for clinical application. With updated research and continued comprehensive coverage of all aspects of B cell biology, Molecular Biology of B Cells, Second Edition is the definitive resource, vital for researchers across molecular biology, immunology and genetics.




Transcription Factors


Book Description

This book focuses on the DNA-binding transcription factors and the proteins with which they directly interact. It examines the regulatory systems that modulate gene expression in all cells and the more specialized systems that regulate localized gene expression throughout the mammalian organism.




Mechanisms of Lymphocyte Activation and Immune Regulation XI


Book Description

In recent years, major developments have increased understanding of various genetic and epigenetic regulatory processes that are critical for the generation of B cell repertoires. These include the role of chromatin regulation and nuclear organization in understating the IgH gene regulation. These proceedings highlight recent developments in lymphocyte development, Ig gene rearrangements and somatic hypermutation, chromatin structure modification, B lymphocyte signaling and fate, receptor editing, and autoimmunity.




Transcription Factors


Book Description

Transcription Factors Normal and Malignant Development of Blood Cells Katya Ravid and Jonathan Licht The role of transcription factors in activating specific genes in blood cells is an important facet of hematopoiesis. Equally important, however, is the pursuit of genes rearranged and aberrantly activated in leukemias (blood malignancies). Transcription Factors: Normal and Malignant Development of Blood Cells focuses on those major transcription factors involved in activation of lineage-specific gene expression during normal versus malignant development of specific blood lineages, as revealed from gene promoter studies, knockout of transcription factors in mice models, and the identification and characterization of chromosomal rearrangement in human blood leukemias. This complete digest of current transcription factor data offers comprehensive coverage of the myriad of transcription factors in blood cell development, composed by established experts in the field. In addition to updating the reader on the connection between chromosomal translocations involving transcription factors and cellular transformation leading to leukemia, Transcription Factors also reviews such subjects as: * Transcription factors and the megakaryocytic, myeloid, and erythroid lineages * Leukemias due to chromosomal translocations involving gene encoding transcription factors * Oncogenesis and hematopoiesis * In vivo studies of transcription factors implicated in hematopoiesis * And much more Appealing to both the researcher and the clinician in the field of hematology, Transcription Factors is a timely presentation of cell lineage development and sheds light on the processes involved in the development of specific leukemias. Providing insight into the study of transcription factors, readers will gain an understanding of mechanisms that lead to normal lineage commitment and terminal differentiation.




Hematopoiesis


Book Description

Hematopoiesis, or the process of blood formation, has been extensively studied at both basic and clinical levels. Human diseases such as thalassemia, immunodeficiency, and leukemia represent defects in this process. Approaches to treat these disorders have required a basic understanding of the biology of blood cells. For instance, hemapoietic stem cell replacement or bone marrow transplantation has been used to ameliorate disease. This volume focuses on hematopoiesis at a cellular and molecular level, and establishes the basis for clinical manipulation of hematopoietic cells for therapeutic benefit. In Part I, the cellular characteristics of progenitors and stem cells are explored. Emphasis is placed on purification of stem cells and both in vitro and in vivo assays. The regulation of normal and leukemis stem cells is illustrated. An excellent discussion of potential use of these cells for gene therapy concludes this section. Hemapoiesis is easily studied during embryogenesis. Part II develops the concept of the waves of hemapoiesis during development. Comparative hematology is making a major comeback as a field in the 1990's. One hope is that general principles of hematopoiesis will be established by studying many models and systems. Part III delves into critical factors that regulate hematopoiesis, including both intracellular and extracellular signals. Part IV and V describe lineage programs for myeloid and lymphoid lineages. These chapters are meant to be illustrative of the different cell fates, but are not exhaustive. Part VI examines the genetics of hematopoisis, particularly in animal models. The hematopoietic system is in constant contact with stromal cells and endothelial cells during development and in the adult. Evidence suggests that endothelial cells and blood cells may arise from a common progenitor, the hemangioblast. Part VII and VIII discuss the stromal and endothelial cells with the emphasis on their interaction with hematopoietic cells.