General Relativity from A to B


Book Description

"This beautiful little book is certainly suitable for anyone who has had an introductory course in physics and even for some who have not."—Joshua N. Goldberg, Physics Today "An imaginative and convincing new presentation of Einstein's theory of general relativity. . . . The treatment is masterful, continual emphasis being placed on careful discussion and motivation, with the aim of showing how physicists think and develop their ideas."—Choice




General Relativity from A to B


Book Description




Gravity


Book Description

Best-selling, accessible physics-first introduction to GR uses minimal new mathematics and begins with the essential physical applications.




Exact Space-Times in Einstein's General Relativity


Book Description

Einstein's theory of general relativity is a theory of gravity and, as in the earlier Newtonian theory, much can be learnt about the character of gravitation and its effects by investigating particular idealised examples. This book describes the basic solutions of Einstein's equations with a particular emphasis on what they mean, both geometrically and physically. Concepts such as big bang and big crunch-types of singularities, different kinds of horizons and gravitational waves, are described in the context of the particular space-times in which they naturally arise. These notions are initially introduced using the most simple and symmetric cases. Various important coordinate forms of each solution are presented, thus enabling the global structure of the corresponding space-time and its other properties to be analysed. The book is an invaluable resource both for graduate students and academic researchers working in gravitational physics.




Topics in the Foundations of General Relativity and Newtonian Gravitation Theory


Book Description

In Topics in the Foundations of General Relativity and Newtonian Gravitation Theory, David B. Malament presents the basic logical-mathematical structure of general relativity and considers a number of special topics concerning the foundations of general relativity and its relation to Newtonian gravitation theory. These special topics include the geometrized formulation of Newtonian theory (also known as Newton-Cartan theory), the concept of rotation in general relativity, and Gödel spacetime. One of the highlights of the book is a no-go theorem that can be understood to show that there is no criterion of orbital rotation in general relativity that fully answers to our classical intuitions. Topics is intended for both students and researchers in mathematical physics and philosophy of science.




Introduction to Relativity


Book Description

Introduction to Relativity is intended to teach physics and astronomy majors at the freshman, sophomore or upper-division levels how to think about special and general relativity in a fundamental, but accessible, way. Designed to render any reader a "master of relativity", everything on the subject is comprehensible and derivable from first principles. The book emphasizes problem solving, contains abundant problem sets, and is conveniently organized to meet the needs of both student and instructor. - Simplicity: the book teaches space and time in relativity in a physical fashion with minimal mathematics - Conciseness: the book teaches relativity by emphasizing the basic simplicity of the principles at work - Visualization: space-time diagrams (Minkowski) illustrate phenomena from simultaneity to the resolution of the twin paradox in a concrete fashion - Worked problems: two chapters of challenging problems solved in several ways illustrate and teach the principles - Problem sets: each chapter is accompanied by a full set of problems for the student that teach the principles and some new phenonmena




Special Relativity, Electrodynamics, and General Relativity


Book Description

Special Relativity, Electrodynamics, and General Relativity: From Newton to Einstein is intended to teach students of physics, astrophysics, astronomy, and cosmology how to think about special and general relativity in a fundamental but accessible way. Designed to render any reader a "master of relativity, all material on the subject is comprehensible and derivable from first principles. The book emphasizes problem solving, contains abundant problem sets, and is conveniently organized to meet the needs of both student and instructor. - Fully revised and expanded second edition with improved figures - Enlarged discussion of dynamics and the relativistic version of Newton's second law - Resolves the twin paradox from the principles of special and general relativity - Includes new chapters which derive magnetism from relativity and electrostatics - Derives Maxwell's equations from Gauss' law and the principles of special relativity - Includes new chapters on differential geometry, space-time curvature, and the field equations of general relativity - Introduces black holes and gravitational waves as illustrations of the principles of general relativity and relates them to the 2015 and 2017 observational discoveries of LIGO




A First Course in General Relativity


Book Description

This textbook develops general relativity and its associated mathematics from a minimum of prerequisites, leading to a physical understanding of the theory in some depth.




General Relativity


Book Description

"Wald's book is clearly the first textbook on general relativity with a totally modern point of view; and it succeeds very well where others are only partially successful. The book includes full discussions of many problems of current interest which are not treated in any extant book, and all these matters are considered with perception and understanding."—S. Chandrasekhar "A tour de force: lucid, straightforward, mathematically rigorous, exacting in the analysis of the theory in its physical aspect."—L. P. Hughston, Times Higher Education Supplement "Truly excellent. . . . A sophisticated text of manageable size that will probably be read by every student of relativity, astrophysics, and field theory for years to come."—James W. York, Physics Today




Stars and Relativity


Book Description

Two of the greatest astrophysicists of the 20th century explore general relativity, properties of matter under astrophysical conditions, stars, and stellar systems. A valuable resource for physicists, astronomers, graduate students. 1971 edition.