Saddlepoint Approximations with Applications


Book Description

Modern statistical methods use complex, sophisticated models that can lead to intractable computations. Saddlepoint approximations can be the answer. Written from the user's point of view, this book explains in clear language how such approximate probability computations are made, taking readers from the very beginnings to current applications. The core material is presented in chapters 1-6 at an elementary mathematical level. Chapters 7-9 then give a highly readable account of higher-order asymptotic inference. Later chapters address areas where saddlepoint methods have had substantial impact: multivariate testing, stochastic systems and applied probability, bootstrap implementation in the transform domain, and Bayesian computation and inference. No previous background in the area is required. Data examples from real applications demonstrate the practical value of the methods. Ideal for graduate students and researchers in statistics, biostatistics, electrical engineering, econometrics, and applied mathematics, this is both an entry-level text and a valuable reference.










Breakthroughs in Statistics


Book Description

Volume III includes more selections of articles that have initiated fundamental changes in statistical methodology. It contains articles published before 1980 that were overlooked in the previous two volumes plus articles from the 1980's - all of them chosen after consulting many of today's leading statisticians.




Saddlepoint Approximations


Book Description

This book explains the ideas behind the saddlepoint approximations as well as giving a detailed mathematical description of the subject and many worked out examples.




Research in Progress


Book Description




Kendall's Advanced Theory of Statistics, Distribution Theory


Book Description

Kendall's Advanced Theory of Statistics and Kendall's Library of Statistics The development of modern statistical theory is reflected in the history of the late Sir Maurice Kenfall's volumes, The Advanced Theory of Statistics. This landmark publication began life as a two-volume work and grew steadily as a single-authored work until the 1950s. In this edition, there is new material on skewness and kurtosis, hazard rate distribution, the bootstrap, the evaluation of the multivariate normal integral and ratios of quadratic forms. It also includes over 200 new references, 40 new exercises, and 20 further examples in the main text.







Robust Statistics


Book Description

The Wiley-Interscience Paperback Series consists of selectedbooks that have been made more accessible to consumers in an effortto increase global appeal and general circulation. With these newunabridged softcover volumes, Wiley hopes to extend the lives ofthese works by making them available to future generations ofstatisticians, mathematicians, and scientists. "This is a nice book containing a wealth of information, much ofit due to the authors. . . . If an instructor designing such acourse wanted a textbook, this book would be the best choiceavailable. . . . There are many stimulating exercises, and the bookalso contains an excellent index and an extensive list ofreferences." —Technometrics "[This] book should be read carefully by anyone who isinterested in dealing with statistical models in a realisticfashion." —American Scientist Introducing concepts, theory, and applications, RobustStatistics is accessible to a broad audience, avoidingallusions to high-powered mathematics while emphasizing ideas,heuristics, and background. The text covers the approach based onthe influence function (the effect of an outlier on an estimater,for example) and related notions such as the breakdown point. Italso treats the change-of-variance function, fundamental conceptsand results in the framework of estimation of a single parameter,and applications to estimation of covariance matrices andregression parameters.




Symbolic Computation for Statistical Inference


Book Description

Over recent years, developments in statistical computing have freed statisticians from the burden of calculation and have made possible new methods of analysis that previously would have been too difficult or time-consuming. Up till now these developments have been primarily in numerical computation and graphical display, but equal steps forward are now being made in the area of symbolic computing: the use of computer languages and procedures to manipulate expressions. This allows researchers to compute an algebraic expression, rather than evaluate the expression numerically over a given range. This book summarizes a decade of research into the use of symbolic computation applied to statistical inference problems. It shows the considerable potential of the subject to automate statistical calculation, leaving researchers free to concentrate on new concepts. Starting with the development of algorithms applied to standard undergraduate problems, the book then goes on to develop increasingly more powerful tools. Later chapters then discuss the application of these algorithms to different areas of statistical methodology.