Generalized Convexity and Fractional Programming with Economic Applications


Book Description

Generalizations of convex functions have been used in a variety of fields such as economics. business administration. engineering. statistics and applied sciences.· In 1949 de Finetti introduced one of the fundamental of generalized convex functions characterized by convex level sets which are now known as quasiconvex functions. Since then numerous types of generalized convex functions have been defined in accordance with the need of particular applications.· In each case such functions preserve soine of the valuable properties of a convex function. In addition to generalized convex functions this volume deals with fractional programs. These are constrained optimization problems which in the objective function involve one or several ratios. Such functions are often generalized convex. Fractional programs arise in management science. economics and numerical mathematics for example. In order to promote the circulation and development of research in this field. an international workshop on "Generalized Concavity. Fractional Programming and Economic Applications" was held at the University of Pisa. Italy. May 30 - June 1. 1988. Following conferences on similar topics in Vancouver. Canada in 1980 and in Canton. USA in 1986. it was the first such conference organized in Europe. It brought together 70 scientists from 11 countries. Organizers were Professor A. Cambini. University of Pisa. Professor E. Castagnoli. Bocconi University. Milano. Professor L. Martein. University of Pisa. Professor P. Mazzoleni. University of Verona and Professor S. Schaible. University of California. Riverside.




Generalized Convexity and Optimization


Book Description

The authors have written a rigorous yet elementary and self-contained book to present, in a unified framework, generalized convex functions. The book also includes numerous exercises and two appendices which list the findings consulted.




Generalized Convexity


Book Description

Generalizations of the classical concept of a convex function have been proposed in various fields such as economics, management science, engineering, statistics and applied sciences during the second half of this century. In addition to new results in more established areas of generalized convexity, this book presents several important developments in recently emerging areas. Also, a number of interesting applications are reported.




Generalized Convexity, Generalized Monotonicity: Recent Results


Book Description

A function is convex if its epigraph is convex. This geometrical structure has very strong implications in terms of continuity and differentiability. Separation theorems lead to optimality conditions and duality for convex problems. A function is quasiconvex if its lower level sets are convex. Here again, the geo metrical structure of the level sets implies some continuity and differentiability properties for quasiconvex functions. Optimality conditions and duality can be derived for optimization problems involving such functions as well. Over a period of about fifty years, quasiconvex and other generalized convex functions have been considered in a variety of fields including economies, man agement science, engineering, probability and applied sciences in accordance with the need of particular applications. During the last twenty-five years, an increase of research activities in this field has been witnessed. More recently generalized monotonicity of maps has been studied. It relates to generalized convexity off unctions as monotonicity relates to convexity. Generalized monotonicity plays a role in variational inequality problems, complementarity problems and more generally, in equilibrium prob lems.




Handbook of Global Optimization


Book Description

Global optimization is concerned with the computation and characterization of global optima of nonlinear functions. During the past three decades the field of global optimization has been growing at a rapid pace, and the number of publications on all aspects of global optimization has been increasing steadily. Many applications, as well as new theoretical, algorithmic, and computational contributions have resulted. The Handbook of Global Optimization is the first comprehensive book to cover recent developments in global optimization. Each contribution in the Handbook is essentially expository in nature, but scholarly in its treatment. The chapters cover optimality conditions, complexity results, concave minimization, DC programming, general quadratic programming, nonlinear complementarity, minimax problems, multiplicative programming, Lipschitz optimization, fractional programming, network problems, trajectory methods, homotopy methods, interval methods, and stochastic approaches. The Handbook of Global Optimization is addressed to researchers in mathematical programming, as well as all scientists who use optimization methods to model and solve problems.




Fractional Programming


Book Description

Mathematical programming has know a spectacular diversification in the last few decades. This process has happened both at the level of mathematical research and at the level of the applications generated by the solution methods that were created. To write a monograph dedicated to a certain domain of mathematical programming is, under such circumstances,especially difficult. In the present monograph we opt for the domain of fractional programming. Interest of this subject was generated by the fact that various optimization problems from engineering and economics consider the minimization of a ratio between physical and/or economical functions, for example cost/time, cost/volume,cost/profit, or other quantities that measure the efficiency of a system. For example, the productivity of industrial systems, defined as the ratio between the realized services in a system within a given period of time and the utilized resources, is used as one of the best indicators of the quality of their operation. Such problems, where the objective function appears as a ratio of functions, constitute fractional programming problem. Due to its importance in modeling various decision processes in management science, operational research, and economics, and also due to its frequent appearance in other problems that are not necessarily economical, such as information theory, numerical analysis, stochastic programming, decomposition algorithms for large linear systems, etc., the fractional programming method has received particular attention in the last three decades.







Handbook of Generalized Convexity and Generalized Monotonicity


Book Description

Studies in generalized convexity and generalized monotonicity have significantly increased during the last two decades. Researchers with very diverse backgrounds such as mathematical programming, optimization theory, convex analysis, nonlinear analysis, nonsmooth analysis, linear algebra, probability theory, variational inequalities, game theory, economic theory, engineering, management science, equilibrium analysis, for example are attracted to this fast growing field of study. Such enormous research activity is partially due to the discovery of a rich, elegant and deep theory which provides a basis for interesting existing and potential applications in different disciplines. The handbook offers an advanced and broad overview of the current state of the field. It contains fourteen chapters written by the leading experts on the respective subject; eight on generalized convexity and the remaining six on generalized monotonicity.




Advances in Mathematical Economics Volume 7


Book Description

A lot of economic problems can be formulated as constrained optimizations and equilibration of their solutions. Various mathematical theories have been supplying economists with indispensable machineries for these problems arising in economic theory. Conversely, mathematicians have been stimulated by various mathematical difficulties raised by economic theories. The series is designed to bring together those mathematicians who are seriously interested in getting new challenging stimuli from economic theories with those economists who are seeking effective mathematical tools for their research. The editorial board of this series comprises the following prominent economists and mathematicians: Managing Editors: S. Kusuoka (Univ. Tokyo), T. Maruyama (Keio Univ.). Editors: R. Anderson (U.C. Berkeley), C. Castaing (Univ. Montpellier), F.H. Clarke (Univ. Lyon I), G. Debreu (U.C. Berkeley), E. Dierker (Univ. Vienna), D. Duffie (Stanford Univ.), L.C. Evans (U.C. Berkeley), T. Fujimoto (Okayama Univ.), J.-M. Grandmont (CREST-CNRS), N. Hirano (Yokohama National Univ.), L. Hurwicz (Univ. of Minnesota), T. Ichiishi (Ohio State Univ.), A. Ioffe (Israel Institute of Technology), S. Iwamoto (Kyushu Univ.), K. Kamiya (Univ. Tokyo), K. Kawamata (Keio Univ.), N. Kikuchi (Keio Univ.), H. Matano (Univ. Tokyo), K. Nishimura (Kyoto Univ.), M.K. Richter (Univ. Minnesota), Y. Takahashi (Kyoto Univ.), M. Valadier (Univ. Montpellier II), A. Yamaguti (Kyoto Univ./Ryukoku Univ.), M. Yano (Keio Univ.).




Nonlinear and Convex Analysis in Economic Theory


Book Description

The papers collected in this volume are contributions to T.I.Tech./K.E.S. Conference on Nonlinear and Convex Analysis in Economic Theory, which was held at Keio University, July 2-4, 1993. The conference was organized by Tokyo Institute of Technology (T. I. Tech.) and the Keio Economic Society (K. E. S.) , and supported by Nihon Keizai Shimbun Inc .. A lot of economic problems can be formulated as constrained optimiza tions and equilibrations of their solutions. Nonlinear-convex analysis has been supplying economists with indispensable mathematical machineries for these problems arising in economic theory. Conversely, mathematicians working in this discipline of analysis have been stimulated by various mathematical difficulties raised by economic the ories. Although our special emphasis was laid upon "nonlinearity" and "con vexity" in relation with economic theories, we also incorporated stochastic aspects of financial economics in our project taking account of the remark able rapid growth of this discipline during the last decade. The conference was designed to bring together those mathematicians who were seriously interested in getting new challenging stimuli from economic theories with those economists who were seeking for effective mathematical weapons for their researches. Thirty invited talks (six of them were plenary talks) given at the conf- ence were roughly classified under the following six headings : 1) Nonlinear Dynamical Systems and Business Fluctuations, . 2) Fixed Point Theory, 3) Convex Analysis and Optimization, 4) Eigenvalue of Positive Operators, 5) Stochastic Analysis and Financial Market, 6) General Equilibrium Analysis.