Generalized Functions, Volume 4


Book Description

The first systematic theory of generalized functions (also known as distributions) was created in the early 1950s, although some aspects were developed much earlier, most notably in the definition of the Green's function in mathematics and in the work of Paul Dirac on quantum electrodynamics in physics. The six-volume collection, Generalized Functions, written by I. M. Gel′fand and co-authors and published in Russian between 1958 and 1966, gives an introduction to generalized functions and presents various applications to analysis, PDE, stochastic processes, and representation theory. The main goal of Volume 4 is to develop the functional analysis setup for the universe of generalized functions. The main notion introduced in this volume is the notion of rigged Hilbert space (also known as the equipped Hilbert space, or Gelfand triple). Such space is, in fact, a triple of topological vector spaces E⊂H⊂E′, where H is a Hilbert space, E′ is dual to E, and inclusions E⊂H and H⊂E′ are nuclear operators. The book is devoted to various applications of this notion, such as the theory of positive definite generalized functions, the theory of generalized stochastic processes, and the study of measures on linear topological spaces.




Generalized Functions Theory and Technique


Book Description

This second edition of Generalized Functions has been strengthened in many ways. The already extensive set of examples has been expanded. Since the publication of the first edition, there has been tremendous growth in the subject and I have attempted to incorporate some of these new concepts. Accordingly, almost all the chapters have been revised. The bibliography has been enlarged considerably. Some of the material has been reorganized. For example, Chapters 12 and 13 of the first edition have been consolidated into Chapter 12 of this edition by a judicious process of elimination and addition of the subject matter. The new Chapter 13 explains the interplay between the theories of moments, asymptotics, and singular perturbations. Similarly, some sections of Chapter 15 have been revised and included in earlier chapters to improve the logical flow of ideas. However, two sections are retained. The section dealing with the application of the probability theory has been revised, and I am thankful to Professor Z.L. Crvenkovic for her help. The new material included in this chapter pertains to the modern topics of periodic distributions and microlocal theory. I have demonstrated through various examples that familiarity with the generalized functions is very helpful for students in physical sciences and technology. For instance, the reader will realize from Chapter 6 how the generalized functions have revolutionized the Fourier analysis which is being used extensively in many fields of scientific activity.




Generalized Functions and Fourier Analysis


Book Description

This book gives an excellent and up-to-date overview on the convergence and joint progress in the fields of Generalized Functions and Fourier Analysis, notably in the core disciplines of pseudodifferential operators, microlocal analysis and time-frequency analysis. The volume is a collection of chapters addressing these fields, their interaction, their unifying concepts and their applications and is based on scientific activities related to the International Association for Generalized Functions (IAGF) and the ISAAC interest groups on Pseudo-Differential Operators (IGPDO) and on Generalized Functions (IGGF), notably on the longstanding collaboration of these groups within ISAAC.




Spaces of Fundamental and Generalized Functions


Book Description

Spaces of Fundamental and Generalized Functions, Volume 2, analyzes the general theory of linear topological spaces. The basis of the theory of generalized functions is the theory of the so-called countably normed spaces (with compatible norms), their unions (inductive limits), and also of the spaces conjugate to the countably normed ones or their unions. This set of spaces is sufficiently broad on the one hand, and sufficiently convenient for the analyst on the other. The book opens with a chapter that discusses the theory of these spaces. This is followed by separate chapters on fundamental and generalized functions, Fourier transformations of fundamental and generalized functions, and spaces of type S.







Fourier Analysis and Its Applications


Book Description

This book presents the theory and applications of Fourier series and integrals, eigenfunction expansions, and related topics, on a level suitable for advanced undergraduates. It includes material on Bessel functions, orthogonal polynomials, and Laplace transforms, and it concludes with chapters on generalized functions and Green's functions for ordinary and partial differential equations. The book deals almost exclusively with aspects of these subjects that are useful in physics and engineering, and includes a wide variety of applications. On the theoretical side, it uses ideas from modern analysis to develop the concepts and reasoning behind the techniques without getting bogged down in the technicalities of rigorous proofs.










Transform Analysis of Generalized Functions


Book Description

Transform Analysis of Generalized Functions concentrates on finite parts of integrals, generalized functions and distributions. It gives a unified treatment of the distributional setting with transform analysis, i.e. Fourier, Laplace, Stieltjes, Mellin, Hankel and Bessel Series.Included are accounts of applications of the theory of integral transforms in a distributional setting to the solution of problems arising in mathematical physics. Information on distributional solutions of differential, partial differential equations and integral equations is conveniently collected here.The volume will serve as introductory and reference material for those interested in analysis, applications, physics and engineering.




Generalized Frobenius Partitions


Book Description

This paper is devoted to the study of equilength two-line arrays of non-negative integers. These are called generalized Frobenius partitions. It is shown that such objects have numerous interactions with modular forms, Kloosterman quadratic forms, the Lusztig-Macdonald-Wall conjectures as well as with classical theta functions and additive number theory.