Generalized Stochastic Processes


Book Description

This textbook shall serve a double purpose: first of all, it is a book about generalized stochastic processes, a very important but highly neglected part of probability theory which plays an outstanding role in noise modelling. Secondly, this textbook is a guide to noise modelling for mathematicians and engineers to foster the interdisciplinary discussion between mathematicians (to provide effective noise models) and engineers (to be familiar with the mathematical backround of noise modelling in order to handle noise models in an optimal way).Two appendices on "A Short Course in Probability Theory" and "Spectral Theory of Stochastic Processes" plus a well-choosen set of problems and solutions round this compact textbook off.




Modelling with Generalized Stochastic Petri Nets


Book Description

World renowned leaders in the field provide an accessible introduction to the use of Generalized Stochastic Petri Nets (GSPNs) for the performance analysis of diverse distributed systems. Divided into two parts, it begins with a summary of the major results in GSPN theory. The second section is devoted entirely to application examples which demonstrate how GSPN methodology can be used in different arenas. A simple version of the software tool used to analyse GSPN models is included with the book and a concise manual for its use is presented in the later chapters.




Stochastic Processes and Applications


Book Description

This book presents various results and techniques from the theory of stochastic processes that are useful in the study of stochastic problems in the natural sciences. The main focus is analytical methods, although numerical methods and statistical inference methodologies for studying diffusion processes are also presented. The goal is the development of techniques that are applicable to a wide variety of stochastic models that appear in physics, chemistry and other natural sciences. Applications such as stochastic resonance, Brownian motion in periodic potentials and Brownian motors are studied and the connection between diffusion processes and time-dependent statistical mechanics is elucidated. The book contains a large number of illustrations, examples, and exercises. It will be useful for graduate-level courses on stochastic processes for students in applied mathematics, physics and engineering. Many of the topics covered in this book (reversible diffusions, convergence to equilibrium for diffusion processes, inference methods for stochastic differential equations, derivation of the generalized Langevin equation, exit time problems) cannot be easily found in textbook form and will be useful to both researchers and students interested in the applications of stochastic processes.




Advanced Medical Statistics (2nd Edition)


Book Description

The book aims to provide both comprehensive reviews of the classical methods and an introduction to new developments in medical statistics. The topics range from meta analysis, clinical trial design, causal inference, personalized medicine to machine learning and next generation sequence analysis. Since the publication of the first edition, there have been tremendous advances in biostatistics and bioinformatics. The new edition tries to cover as many important emerging areas and reflect as much progress as possible. Many distinguished scholars, who greatly advanced their research areas in statistical methodology as well as practical applications, also have revised several chapters with relevant updates and written new ones from scratch.The new edition has been divided into four sections, including, Statistical Methods in Medicine and Epidemiology, Statistical Methods in Clinical Trials, Statistical Genetics, and General Methods. To reflect the rise of modern statistical genetics as one of the most fertile research areas since the publication of the first edition, the brand new section on Statistical Genetics includes entirely new chapters reflecting the state of the art in the field.Although tightly related, all the book chapters are self-contained and can be read independently. The book chapters intend to provide a convenient launch pad for readers interested in learning a specific topic, applying the related statistical methods in their scientific research and seeking the newest references for in-depth research.




An Introduction to Sparse Stochastic Processes


Book Description

A detailed guide to sparsity, providing a description of their transform-domain statistics and applying the models to practical algorithms.




Theory of Probability and Random Processes


Book Description

A one-year course in probability theory and the theory of random processes, taught at Princeton University to undergraduate and graduate students, forms the core of this book. It provides a comprehensive and self-contained exposition of classical probability theory and the theory of random processes. The book includes detailed discussion of Lebesgue integration, Markov chains, random walks, laws of large numbers, limit theorems, and their relation to Renormalization Group theory. It also includes the theory of stationary random processes, martingales, generalized random processes, and Brownian motion.




Essentials of Stochastic Processes


Book Description

Building upon the previous editions, this textbook is a first course in stochastic processes taken by undergraduate and graduate students (MS and PhD students from math, statistics, economics, computer science, engineering, and finance departments) who have had a course in probability theory. It covers Markov chains in discrete and continuous time, Poisson processes, renewal processes, martingales, and option pricing. One can only learn a subject by seeing it in action, so there are a large number of examples and more than 300 carefully chosen exercises to deepen the reader’s understanding. Drawing from teaching experience and student feedback, there are many new examples and problems with solutions that use TI-83 to eliminate the tedious details of solving linear equations by hand, and the collection of exercises is much improved, with many more biological examples. Originally included in previous editions, material too advanced for this first course in stochastic processes has been eliminated while treatment of other topics useful for applications has been expanded. In addition, the ordering of topics has been improved; for example, the difficult subject of martingales is delayed until its usefulness can be applied in the treatment of mathematical finance.




Stochastic Cauchy Problems in Infinite Dimensions


Book Description

Stochastic Cauchy Problems in Infinite Dimensions: Generalized and Regularized Solutions presents stochastic differential equations for random processes with values in Hilbert spaces. Accessible to non-specialists, the book explores how modern semi-group and distribution methods relate to the methods of infinite-dimensional stochastic analysis. It also shows how the idea of regularization in a broad sense pervades all these methods and is useful for numerical realization and applications of the theory. The book presents generalized solutions to the Cauchy problem in its initial form with white noise processes in spaces of distributions. It also covers the "classical" approach to stochastic problems involving the solution of corresponding integral equations. The first part of the text gives a self-contained introduction to modern semi-group and abstract distribution methods for solving the homogeneous (deterministic) Cauchy problem. In the second part, the author solves stochastic problems using semi-group and distribution methods as well as the methods of infinite-dimensional stochastic analysis.




Probability Theory and Stochastic Processes


Book Description

The ultimate objective of this book is to present a panoramic view of the main stochastic processes which have an impact on applications, with complete proofs and exercises. Random processes play a central role in the applied sciences, including operations research, insurance, finance, biology, physics, computer and communications networks, and signal processing. In order to help the reader to reach a level of technical autonomy sufficient to understand the presented models, this book includes a reasonable dose of probability theory. On the other hand, the study of stochastic processes gives an opportunity to apply the main theoretical results of probability theory beyond classroom examples and in a non-trivial manner that makes this discipline look more attractive to the applications-oriented student. One can distinguish three parts of this book. The first four chapters are about probability theory, Chapters 5 to 8 concern random sequences, or discrete-time stochastic processes, and the rest of the book focuses on stochastic processes and point processes. There is sufficient modularity for the instructor or the self-teaching reader to design a course or a study program adapted to her/his specific needs. This book is in a large measure self-contained.




An Introduction to Stochastic Modeling


Book Description

An Introduction to Stochastic Modeling provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.