An Introduction to Covariant Quantum Mechanics


Book Description

This book deals with an original contribution to the hypothetical missing link unifying the two fundamental branches of physics born in the twentieth century, General Relativity and Quantum Mechanics. Namely, the book is devoted to a review of a "covariant approach" to Quantum Mechanics, along with several improvements and new results with respect to the previous related literature. The first part of the book deals with a covariant formulation of Galilean Classical Mechanics, which stands as a suitable background for covariant Quantum Mechanics. The second part deals with an introduction to covariant Quantum Mechanics. Further, in order to show how the presented covariant approach works in the framework of standard Classical Mechanics and standard Quantum Mechanics, the third part provides a detailed analysis of the standard Galilean space-time, along with three dynamical classical and quantum examples. The appendix accounts for several non-standard mathematical methods widely used in the body of the book.




Covariant Loop Quantum Gravity


Book Description

A comprehensible introduction to the most fascinating research in theoretical physics: advanced quantum gravity. Ideal for researchers and graduate students.




An Introduction To Covariant Quantum Gravity And Asymptotic Safety


Book Description

This book covers recent developments in the covariant formulation of quantum gravity. Developed in the 1960s by Feynman and DeWitt, by the 1980s this approach seemed to lead nowhere due to perturbative non-renormalizability. The possibility of non-perturbative renormalizability or 'asymptotic safety', originally suggested by Weinberg but largely ignored for two decades, was revived towards the end of the century by technical progress in the field of the renormalization group. It is now a very active field of research, providing an alternative to other approaches to quantum gravity.Written by one of the early contributors to this subject, this book provides a gentle introduction to the relevant ideas and calculational techniques. Several explicit calculations gradually bring the reader close to the current frontier of research. The main difficulties and present lines of development are also outlined.




General Principles of Quantum Field Theory


Book Description

The majority of the "memorable" results of relativistic quantum theory were obtained within the framework of the local quantum field approach. The explanation of the basic principles of the local theory and its mathematical structure has left its mark on all modern activity in this area. Originally, the axiomatic approach arose from attempts to give a mathematical meaning to the quantum field theory of strong interactions (of Yukawa type). The fields in such a theory are realized by operators in Hilbert space with a positive Poincare-invariant scalar product. This "classical" part of the axiomatic approach attained its modern form as far back as the sixties. * It has retained its importance even to this day, in spite of the fact that nowadays the main prospects for the description of the electro-weak and strong interactions are in connection with the theory of gauge fields. In fact, from the point of view of the quark model, the theory of strong interactions of Wightman type was obtained by restricting attention to just the "physical" local operators (such as hadronic fields consisting of ''fundamental'' quark fields) acting in a Hilbert space of physical states. In principle, there are enough such "physical" fields for a description of hadronic physics, although this means that one must reject the traditional local Lagrangian formalism. (The connection is restored in the approximation of low-energy "phe nomenological" Lagrangians.




Quantum Mechanics from General Relativity


Book Description

This monograph is a sequel to my earlier work, General Relativity and Matter [1], which will be referred to henceforth as GRM. The monograph, GRM, focuses on the full set of implications of General Relativity Theory, as a fundamental theory of matter in all domains, from elementary particle physics to cosmology. It is shown there to exhibit an explicit unification of the gravitational and electromagnetic fields of force with the inertial manifestations of matter, expressing the latter explicitly in terms of a covariant field theory within the structure of this general theory. This monograph will focus, primarily, on the special relativistic limit of the part of this general field theory of matter that deals with inertia, in the domain where quantum mechanics has been evoked in contemporary physics as a funda mental explanation for the behavior of elementary matter. Many of the results presented in this book are based on earlier published works in the journals, which will be listed in the Bibliography. These results will be presented here in an expanded form, with more discussion on the motivation and explanation for the theoretical development of the subject than space would allow in normal journal articles, and they will be presented in one place where there would then be a more unified and coherent explication of the subject.




Covariant Physics


Book Description

A textbook for 2nd and 3rd year undergraduate students using the fundamental principle of covariance as a basis for studying classical mechanics, electrodynamics, the special theory of relativity, and the general theory of relativity, before moving on to more advanced topics of field theory, differential forms, and modified theories of gravity.




Progress and Visions in Quantum Theory in View of Gravity


Book Description

This book focuses on a critical discussion of the status and prospects of current approaches in quantum mechanics and quantum field theory, in particular concerning gravity. It contains a carefully selected cross-section of lectures and discussions at the seventh conference “Progress and Visions in Quantum Theory in View of Gravity” which took place in fall 2018 at the Max Planck Institute for Mathematics in the Sciences in Leipzig. In contrast to usual proceeding volumes, instead of reporting on the most recent technical results, contributors were asked to discuss visions and new ideas in foundational physics, in particular concerning foundations of quantum field theory. A special focus has been put on the question of which physical principles of quantum (field) theory can be considered fundamental in view of gravity. The book is mainly addressed to mathematicians and physicists who are interested in fundamental questions of mathematical physics. It allows the reader to obtain a broad and up-to-date overview of a fascinating active research area.




Generally Covariant Unified Field Theory


Book Description

This book is the first to describe a very successful objective unified field theory which emerged in 2003 and which is already mainstream physics - Einstein Cartan Evans (ECE) field theory. The latter completes the well known work of Einstein and Cartan, who from 1925 to 1955 sought to unify field theory in physics with the principles of general relativity. These principles are based on the need for objectivity in natural philosophy, were first suggested by Francis Bacon in the sixteenth century and developed into general relativity in about 1915. In this year, using Riemann geometry, Einstein and Hilbert independently arrived at an objective field equation for gravitation. Since then there have been many attempts to unify the 1915 gravitational theory with the other three fundamental fields: electromagnetism, the weak and strong fields. As described for the first time in this book, unification is achieved straightforwardly with the principles of standard Cartan geometry and the Evans Ansatz. The latter shows that electromagnetism is spinning spacetime, gravitation is curving spacetime and that they are unified with the structure (or master) equations of Cartan. Quantum mechanics is unified with general relativity using the Evans Lemma and wave equation. Technical appendices and charts are provided which show how all the major equations of physics are obtained from the ECE field theory and two introductory chapters describe the background mathematics from an elementary level. The mathematical structure of ECE field theory is standard Cartan geometry, also known as differential geometry. The main topics of contemporary physics are covered in individual chapters, which also describe the conditions under which ECE theory reduces to Einstein Hilbert (EH) theory, and to Maxwell Heaviside field theory in classical electrodynamics. The Dirac equation is derived as a limit of the wave equation of ECE theory. The Schrodinger and Newton equations then follow as limits of the Dirac equation. It is therefore shown that ECE field theory provides, for the first time, a structure for the objective unification of field theory in natural philosophy.







Progress in Group Field Theory and Related Quantum Gravity Formalisms


Book Description

Following the fundamental insights from quantum mechanics and general relativity, geometry itself should have a quantum description; the search for a complete understanding of this description is what drives the field of quantum gravity. Group field theory is an ambitious framework in which theories of quantum geometry are formulated, incorporating successful ideas from the fields of matrix models, ten-sor models, spin foam models and loop quantum gravity, as well as from the broader areas of quantum field theory and mathematical physics. This special issue collects recent work in group field theory and these related approaches, as well as other neighbouring fields (e.g., cosmology, quantum information and quantum foundations, statistical physics) to the extent that these are directly relevant to quantum gravity research.