Generation and Evolution of a Viscous Vortex Pair
Author : Gaurav Gupta
Publisher :
Page : 254 pages
File Size : 30,1 MB
Release : 2003
Category :
ISBN :
Author : Gaurav Gupta
Publisher :
Page : 254 pages
File Size : 30,1 MB
Release : 2003
Category :
ISBN :
Author :
Publisher :
Page : 426 pages
File Size : 29,68 MB
Release : 1995
Category : Aeronautics
ISBN :
Author : Ronald Lee Panton
Publisher : Computational Mechanics
Page : 448 pages
File Size : 29,52 MB
Release : 1997
Category : Science
ISBN :
Why is wall turbulence self-sustaining? In this book well-regarded researchers not only discuss what they know and believe, but also speculate on ideas that still require numerical or experimental testing and verification. An initial brief history of boundary layer structure research is followed by chapters on experimental information and specific topics within the subject. There are then sections on computational aspects.
Author : Jie-Zhi Wu
Publisher : Springer Science & Business Media
Page : 776 pages
File Size : 12,88 MB
Release : 2007-04-20
Category : Technology & Engineering
ISBN : 3540290281
This book is a comprehensive and intensive monograph for scientists, engineers and applied mathematicians, as well as graduate students in fluid dynamics. It starts with a brief review of fundamentals of fluid dynamics, with an innovative emphasis on the intrinsic orthogonal decomposition of fluid dynamic process, by which one naturally identifies the content and scope of vorticity and vortex dynamics. This is followed by a detailed presentation of vorticity dynamics as the basis of later development. In vortex dynamics part the book deals with the formation, motion, interaction, stability, and breakdown of various vortices. Typical vortex structures are analyzed in laminar, transitional, and turbulent flows, including stratified and rotational fluids. Physical understanding of vertical flow phenomena and mechanisms is the first priority throughout the book. To make the book self-contained, some mathematical background is briefly presented in the main text, but major prerequisites are systematically given in appendices. Material usually not seen in books on vortex dynamics is included, such as geophysical vortex dynamics, aerodynamic vortical flow diagnostics and management.
Author : M. S. Howe
Publisher : Cambridge University Press
Page : 236 pages
File Size : 26,40 MB
Release : 2003
Category : Mathematics
ISBN : 9780521012232
Table of contents
Author :
Publisher :
Page : 400 pages
File Size : 21,17 MB
Release : 1948
Category : Mechanics, Applied
ISBN :
Author : Sheldon Green
Publisher : Springer Science & Business Media
Page : 905 pages
File Size : 35,59 MB
Release : 2012-12-06
Category : Technology & Engineering
ISBN : 940110249X
Fluid Vortices is a comprehensive, up-to-date, research-level overview covering all salient flows in which fluid vortices play a significant role. The various chapters have been written by specialists from North America, Europe and Asia, making for unsurpassed depth and breadth of coverage. Topics addressed include fundamental vortex flows (mixing layer vortices, vortex rings, wake vortices, vortex stability, etc.), industrial and environmental vortex flows (aero-propulsion system vortices, vortex-structure interaction, atmospheric vortices, computational methods with vortices, etc.), and multiphase vortex flows (free-surface effects, vortex cavitation, and bubble and particle interactions with vortices). The book can also be recommended as an advanced graduate-level supplementary textbook. The first nine chapters of the book are suitable for a one-term course; chapters 10--19 form the basis for a second one-term course.
Author : Chaoqun Liu
Publisher : Academic Press
Page : 460 pages
File Size : 13,23 MB
Release : 2020-10-29
Category : Technology & Engineering
ISBN : 0128190248
Liutex and Its Applications in Turbulence Research reviews the history of vortex definition, provides an accurate mathematical definition of vortices, and explains their applications in flow transition, turbulent flow, flow control, and turbulent flow experiments. The book explains the term "Rortex" as a mathematically defined rigid rotation of fluids or vortex, which could help solve many longstanding problems in turbulence research. The accurate mathematical definition of the vortex is important in a range of industrial contexts, including aerospace, turbine machinery, combustion, and electronic cooling systems, so there are many areas of research that can benefit from the innovations described here. This book provides a thorough survey of the latest research in generalized and flow-thermal, unified, law-of-the-wall for wall-bounded turbulence. Important theory and methodologies used for developing these laws are described in detail, including: the classification of the conventional turbulent boundary layer concept based on proper velocity scaling; the methodology for identification of the scales of velocity, temperature, and length needed to establish the law; and the discovery, proof, and strict validations of the laws, with both Reynolds and Prandtl number independency properties using DNS data. The establishment of these statistical laws is important to modern fluid mechanics and heat transfer research, and greatly expands our understanding of wall-bounded turbulence. - Provides an accurate mathematical definition of vortices - Provides a thorough survey of the latest research in generalized and flow-thermal, unified, law-of-the-wall for wall-bounded turbulence - Explains the term "Rortex as a mathematically defined rigid rotation of fluids or vortex - Covers the statistical laws important to modern fluid mechanics and heat transfer research, and greatly expands our understanding of wall-bounded turbulence
Author : P. G. Saffman
Publisher : Cambridge University Press
Page : 332 pages
File Size : 29,98 MB
Release : 1995-02-24
Category : Mathematics
ISBN : 9780521477390
Vortex dynamics is a natural paradigm for the field of chaotic motion and modern dynamical system theory. However, this volume focuses on those aspects of fluid motion that are primarily controlled by the vorticity and are such that the effects of the other fluid properties are secondary.
Author : Emmanuel Branlard
Publisher : Springer
Page : 632 pages
File Size : 21,4 MB
Release : 2017-04-05
Category : Technology & Engineering
ISBN : 3319551647
The book introduces the fundamentals of fluid-mechanics, momentum theories, vortex theories and vortex methods necessary for the study of rotors aerodynamics and wind-turbines aerodynamics in particular. Rotor theories are presented in a great level of details at the beginning of the book. These theories include: the blade element theory, the Kutta-Joukowski theory, the momentum theory and the blade element momentum method. A part of the book is dedicated to the description and implementation of vortex methods. The remaining of the book focuses on the study of wind turbine aerodynamics using vortex-theory analyses or vortex-methods. Examples of vortex-theory applications are: optimal rotor design, tip-loss corrections, yaw-models and dynamic inflow models. Historical derivations and recent extensions of the models are presented. The cylindrical vortex model is another example of a simple analytical vortex model presented in this book. This model leads to the development of different BEM models and it is also used to provide the analytical velocity field upstream of a turbine or a wind farm under aligned or yawed conditions. Different applications of numerical vortex methods are presented. Numerical methods are used for instance to investigate the influence of a wind turbine on the incoming turbulence. Sheared inflows and aero-elastic simulations are investigated using vortex methods for the first time. Many analytical flows are derived in details: vortex rings, vortex cylinders, Hill's vortex, vortex blobs etc. They are used throughout the book to devise simple rotor models or to validate the implementation of numerical methods. Several Matlab programs are provided to ease some of the most complex implementations.