Genes and Ingenuity


Book Description

Report of an inquiry concerned with two broad issues: the patenting of genetic materials and technologies, and the exploitation of these patents and the distinction that can and possibly should be made between discoveries and inventions when referring to claims over genetic sequences.




Genes and Ingenuity


Book Description

Report of an inquiry concerned with two broad issues: the patenting of genetic materials and technologies, and the exploitation of these patents and the distinction that can and possibly should be made between discoveries and inventions when referring to claims over genetic sequences.




Ingenious Genes


Book Description

A proposal for a new model of the evolution of gene regulation networks and development that draws on work from artificial intelligence and philosophy of mind. Each of us is a collection of more than ten trillion cells, busy performing tasks crucial to our continued existence. Gene regulation networks, consisting of a subset of genes called transcription factors, control cellular activity, producing the right gene activities for the many situations that the multiplicity of cells in our bodies face. Genes working together make up a truly ingenious system. In this book, Roger Sansom investigates how gene regulation works and how such a refined but simple system evolved. Sansom describes in detail two frameworks for understanding gene regulation. The first, developed by the theoretical biologist Stuart Kauffman, holds that gene regulation networks are fundamentally systems that repeat patterns of gene expression. Sansom finds Kauffman's framework an inadequate explanation for how cells overcome the difficulty of development. Sansom proposes an alternative: the connectionist framework. Drawing on work from artificial intelligence and philosophy of mind, he argues that the key lies in how multiple transcription factors combine to regulate a single gene, acting in a way that is qualitatively consistent. This allows the expression of genes to be finely tuned to the variable microenvironments of cells. Because of the nature of both development and its evolution, we can gain insight into the developmental process when we identify gene regulation networks as the controllers of development. The ingenuity of genes is explained by how gene regulation networks evolve to control development.




The Ingenuity of Genes


Book Description




The Neurobiological Basis of Suicide


Book Description

With recent studies using genetic, epigenetic, and other molecular and neurochemical approaches, a new era has begun in understanding pathophysiology of suicide. Emerging evidence suggests that neurobiological factors are not only critical in providing potential risk factors but also provide a promising approach to develop more effective treatment and prevention strategies. The Neurobiological Basis of Suicide discusses the most recent findings in suicide neurobiology. Psychological, psychosocial, and cultural factors are important in determining the risk factors for suicide; however, they offer weak prediction and can be of little clinical use. Interestingly, cognitive characteristics are different among depressed suicidal and depressed nonsuicidal subjects, and could be involved in the development of suicidal behavior. The characterization of the neurobiological basis of suicide is in delineating the risk factors associated with suicide. The Neurobiological Basis of Suicide focuses on how and why these neurobiological factors are crucial in the pathogenic mechanisms of suicidal behavior and how these findings can be transformed into potential therapeutic applications.




The Language of God


Book Description

Dr Francis S. Collins, head of the Human Genome Project, is one of the world's leading scientists, working at the cutting edge of the study of DNA, the code of life. Yet he is also a man of unshakable faith in God. How does he reconcile the seemingly unreconcilable? In THE LANGUAGE OF GOD he explains his own journey from atheism to faith, and then takes the reader on a stunning tour of modern science to show that physics, chemistry and biology -- indeed, reason itself -- are not incompatible with belief. His book is essential reading for anyone who wonders about the deepest questions of all: why are we here? How did we get here? And what does life mean?




The Genome Factor


Book Description

"For a century, social scientists have avoided genetics like the plague. But in the past decade, a small but intrepid group of economists, political scientists, and sociologists have harnessed the genomics revolution to paint a more complete picture of human social life than ever before. The Genome Factor describes the latest astonishing discoveries being made at the scientific frontier where genomics and the social sciences intersect. The Genome Factor reveals that there are real genetic differences by racial ancestry--but ones that don't conform to what we call black, white, or Latino. Genes explain a significant share of who gets ahead in society and who does not, but instead of giving rise to a genotocracy, genes often act as engines of mobility that counter social disadvantage. An increasing number of us are marrying partners with similar education levels as ourselves, but genetically speaking, humans are mixing it up more than ever before with respect to mating and reproduction. These are just a few of the many findings presented in this illuminating and entertaining book, which also tackles controversial topics such as genetically personalized education and the future of reproduction in a world where more and more of us are taking advantage of cheap genotyping services like 23andMe to find out what our genes may hold in store for ourselves and our children. The Genome Factor shows how genomics is transforming the social sciences--and how social scientists are integrating both nature and nurture into a unified, comprehensive understanding of human behavior at both the individual and society-wide levels."--







The Next 500 Years


Book Description

An argument that we have a moral duty to explore other planets and solar systems--because human life on Earth has an expiration date. Inevitably, life on Earth will come to an end, whether by climate disaster, cataclysmic war, or the death of the sun in a few billion years. To avoid extinction, we will have to find a new home planet, perhaps even a new solar system, to inhabit. In this provocative and fascinating book, Christopher Mason argues that we have a moral duty to do just that. As the only species aware that life on Earth has an expiration date, we have a responsibility to act as the shepherd of life-forms--not only for our species but for all species on which we depend and for those still to come (by accidental or designed evolution). Mason argues that the same capacity for ingenuity that has enabled us to build rockets and land on other planets can be applied to redesigning biology so that we can sustainably inhabit those planets. And he lays out a 500-year plan for undertaking the massively ambitious project of reengineering human genetics for life on other worlds. As they are today, our frail human bodies could never survive travel to another habitable planet. Mason describes the toll that long-term space travel took on astronaut Scott Kelly, who returned from a year on the International Space Station with changes to his blood, bones, and genes. Mason proposes a ten-phase, 500-year program that would engineer the genome so that humans can tolerate the extreme environments of outer space--with the ultimate goal of achieving human settlement of new solar systems. He lays out a roadmap of which solar systems to visit first, and merges biotechnology, philosophy, and genetics to offer an unparalleled vision of the universe to come.




The $1,000 Genome


Book Description

In 2000, President Bill Clinton signaled the completion of the Human Genome Project at a cost in excess of $2 billion. A decade later, the price for any of us to order our own personal genome sequence--a comprehensive map of the 3 billion letters in our DNA--is rapidly and inevitably dropping to just $1,000. Dozens of men and women--scientists, entrepreneurs, celebrities, and patients--have already been sequenced, pioneers in a bold new era of personalized genomic medicine. The $1,000 genome has long been considered the tipping point that would open the floodgates to this revolution. Do you have gene variants associated with Alzheimer's or diabetes, heart disease or cancer? Which drugs should you consider taking for various diseases, and at what dosage? In the years to come, doctors will likely be able to tackle all of these questions--and many more--by using a computer in their offices to call up your unique genome sequence, which will become as much a part of your medical record as your blood pressure.