Electromagnetic Optimization by Genetic Algorithms


Book Description

Authoritative coverage of a revolutionary technique for overcoming problems in electromagnetic design Genetic algorithms are stochastic search procedures modeled on the Darwinian concepts of natural selection and evolution. The machinery of genetic algorithms utilizes an optimization methodology that allows a global search of the cost surface via statistical random processes dictated by the Darwinian evolutionary concept. These easily programmed and readily implemented procedures robustly locate extrema of highly multimodal functions and therefore are particularly well suited to finding solutions to a broad range of electromagnetic optimization problems. Electromagnetic Optimization by Genetic Algorithms is the first book devoted exclusively to the application of genetic algorithms to electromagnetic device design. Compiled by two highly competent and well-respected members of the electromagnetics community, this book describes numerous applications of genetic algorithms to the design and optimization of various low- and high-frequency electromagnetic components. Special features include: * Introduction by David E. Goldberg, "A Meditation on the Application of Genetic Algorithms" * Design of linear and planar arrays using genetic algorithms * Application of genetic algorithms to the design of broadband, wire, and integrated antennas * Genetic algorithm-driven design of dielectric gratings and frequency-selective surfaces * Synthesis of magnetostatic devices using genetic algorithms * Application of genetic algorithms to multiobjective electromagnetic backscattering optimization * A comprehensive list of the up-to-date references applicable to electromagnetic design problems Supplemented with more than 250 illustrations, Electromagnetic Optimization by Genetic Algorithms is a powerful resource for electrical engineers interested in modern electromagnetic designs and an indispensable reference for university researchers.




Multidisciplinary Design Optimization Methods for Electrical Machines and Drive Systems


Book Description

This book presents various computationally efficient component- and system-level design optimization methods for advanced electrical machines and drive systems. Readers will discover novel design optimization concepts developed by the authors and other researchers in the last decade, including application-oriented, multi-disciplinary, multi-objective, multi-level, deterministic, and robust design optimization methods. A multi-disciplinary analysis includes various aspects of materials, electromagnetics, thermotics, mechanics, power electronics, applied mathematics, manufacturing technology, and quality control and management. This book will benefit both researchers and engineers in the field of motor and drive design and manufacturing, thus enabling the effective development of the high-quality production of innovative, high-performance drive systems for challenging applications, such as green energy systems and electric vehicles.




Finite Elements-based Optimization


Book Description

This book is intended to be a cookbook for students and researchers to understand the finite element method and optimization methods and couple them to effect shape optimization. The optimization part of the book will survey optimization methods and focus on the genetic algorithm and Powell’s method for implementation in the codes. It will contain pseudo-code for the relevant algorithms and homework problems to reinforce the theory to compile finite element programs capable of shape optimization. Features Enables readers to understand the finite element method and optimization methods and couple them to effect shape optimization Presents simple approach with algorithms for synthesis Focuses on automated computer aided design (CAD) of electromagnetic devices Provides a unitary framework involving optimization and numerical modelling Discusses how to integrate open-source mesh generators into your code Indicates how parallelization of algorithms, especially matrix solution and optimization, may be approached cheaply using the graphics processing unit (GPU) that is available on most PCs today Includes coupled problem optimization using hyperthermia as an example




Genetic Algorithms in Electromagnetics


Book Description

A thorough and insightful introduction to using genetic algorithms to optimize electromagnetic systems Genetic Algorithms in Electromagnetics focuses on optimizing the objective function when a computer algorithm, analytical model, or experimental result describes the performance of an electromagnetic system. It offers expert guidance to optimizing electromagnetic systems using genetic algorithms (GA), which have proven to be tenacious in finding optimal results where traditional techniques fail. Genetic Algorithms in Electromagnetics begins with an introduction to optimization and several commonly used numerical optimization routines, and goes on to feature: Introductions to GA in both binary and continuous variable forms, complete with examples of MATLAB(r) commands Two step-by-step examples of optimizing antenna arrays as well as a comprehensive overview of applications of GA to antenna array design problems Coverage of GA as an adaptive algorithm, including adaptive and smart arrays as well as adaptive reflectors and crossed dipoles Explanations of the optimization of several different wire antennas, starting with the famous "crooked monopole" How to optimize horn, reflector, and microstrip patch antennas, which require significantly more computing power than wire antennas Coverage of GA optimization of scattering, including scattering from frequency selective surfaces and electromagnetic band gap materials Ideas on operator and parameter selection for a GA Detailed explanations of particle swarm optimization and multiple objective optimization An appendix of MATLAB code for experimentation




Advanced Computational and Design Techniques in Applied Electromagnetic Systems


Book Description

This symposium was concerned with advanced computational and design techniques in applied electromagnetic systems including devices and materials. The scope of the proceedings cover a wide variety of topics in applied electromagnetic fields: optimal design techniques and applications, inverse problems, advanced numerical techniques, mechanism and dynamics of new actuators, physics and applications of magnetic levitation, electromagnetic propulsion and superconductivity, modeling and applications of magnetic fluid, plasma and arc discharge, high-frequency field computations, electronic device simulations and magnetic materials.




The Practical Handbook of Genetic Algorithms


Book Description

The mathematics employed by genetic algorithms (GAs)are among the most exciting discoveries of the last few decades. But what exactly is a genetic algorithm? A genetic algorithm is a problem-solving method that uses genetics as its model of problem solving. It applies the rules of reproduction, gene crossover, and mutation to pseudo-organism




Optimization and Inverse Problems in Electromagnetism


Book Description

From 12 to 14 September 2002, the Academy of Humanities and Economics (AHE) hosted the workshop "Optimization and Inverse Problems in Electromagnetism". After this bi-annual event, a large number of papers were assembled and combined in this book. During the workshop recent developments and applications in optimization and inverse methodologies for electromagnetic fields were discussed. The contributions selected for the present volume cover a wide spectrum of inverse and optimal electromagnetic methodologies, ranging from theoretical to practical applications. A number of new optimal and inverse methodologies were proposed. There are contributions related to dedicated software. Optimization and Inverse Problems in Electromagnetism consists of three thematic chapters, covering: -General papers (survey of specific aspects of optimization and inverse problems in electromagnetism), -Methodologies, -Industrial Applications. The book can be useful to students of electrical and electronics engineering, computer science, applied mathematics (PhD level) and to researchers interested in the topic.




Multiobjective Shape Design in Electricity and Magnetism


Book Description

Multiobjective Shape Design in Electricity and Magnetism is entirely focused on electric and magnetic field synthesis, with special emphasis on the optimal shape design of devices when conflicting objectives are to be fulfilled. Direct problems are solved by means of finite-element analysis, while evolutionary computing is used to solve multiobjective inverse problems. This approach, which is original, is coherently developed throughout the whole manuscript. The use of game theory, dynamic optimisation, and Bayesian imaging strengthens the originality of the book. Covering the development of multiobjective optimisation in the past ten years, Multiobjective Shape Design in Electricity and Magnetism is a concise, comprehensive and up-to-date introduction to this research field, which is growing in the community of electricity and magnetism. Theoretical issues are illustrated by practical examples. In particular, a test problem is solved by different methods so that, by comparison of results, advantages and limitations of the various methods are made clear.







Nonlinear Electromagnetic Systems


Book Description

The book covers classical and practical approaches to electromagnetic field solutions in magnetic devices. The following topics are addressed: Advanced computional techniques; Intelligent computer aided design; Magnetic materials; Inverse problems; Magnetic sensors and transducers; Performance and optimisation of devices; Applications to electronic systems; Modelling of non-linear systems and other related topics. This volume presents 200 of the best articles presented at the International Symposium on Non-Linear Electromagnetic Systems (ISEM in Cardiff, Wales). The previous ISEM papers were published in the successful volume Advanced Computational and Design Techniques in Applied Electromagnetic Systems (by Elsevier).Main chapters in this book are: Electromagnetic Devices: Non-linearities at contacts and interfaces in semiconductor structures by R.H. Williams as key-note. Optimisation, Inverse and Biological Studies: Power loss testing; intelligent computation of optimization of metal cutting; grid methods for CFD and CEM. Magnetic Materials: Materials for circuit semilator applications; rotational magnetostriction. Computational Techniques and Modelling: Electromagnetic device design; soft magnetic materials; engineering application of artificial intelligence. Sensors and Non-destructive Testing: Eddy current nondestructive evaluation; nonlinear magnetoresistance; micro magnetic sensor. Electronic and Electrical Applications: Non-linear transistor parameters; superconducting magnets.