Dobzhansky's Genetics of Natural Populations I-XLIII


Book Description

A reproduction of the forty-three articles that make up "The Genetics of Natural Populations" series, perhaps the most important single corpus in modern evolutionary genetics.




Conservation and the Genetics of Populations


Book Description

Loss of biodiversity is among the greatest problems facing the world today. Conservation and the Genetics of Populations gives a comprehensive overview of the essential background, concepts, and tools needed to understand how genetic information can be used to conserve species threatened with extinction, and to manage species of ecological or commercial importance. New molecular techniques, statistical methods, and computer programs, genetic principles, and methods are becoming increasingly useful in the conservation of biological diversity. Using a balance of data and theory, coupled with basic and applied research examples, this book examines genetic and phenotypic variation in natural populations, the principles and mechanisms of evolutionary change, the interpretation of genetic data from natural populations, and how these can be applied to conservation. The book includes examples from plants, animals, and microbes in wild and captive populations. This second edition contains new chapters on Climate Change and Exploited Populations as well as new sections on genomics, genetic monitoring, emerging diseases, metagenomics, and more. One-third of the references in this edition were published after the first edition. Each of the 22 chapters and the statistical appendix have a Guest Box written by an expert in that particular topic (including James Crow, Louis Bernatchez, Loren Rieseberg, Rick Shine, and Lisette Waits). This book is essential for advanced undergraduate and graduate students of conservation genetics, natural resource management, and conservation biology, as well as professional conservation biologists working for wildlife and habitat management agencies. Additional resources for this book can be found at: www.wiley.com/go/allendorf/populations.







Introduction to Conservation Genetics


Book Description

This impressive author team brings the wealth of advances in conservation genetics into the new edition of this introductory text, including new chapters on population genomics and genetic issues in introduced and invasive species. They continue the strong learning features for students - main points in the margin, chapter summaries, vital support with the mathematics, and further reading - and now guide the reader to software and databases. Many new references reflect the expansion of this field. With examples from mammals, birds ...







Theoretical Aspects of Population Genetics. (MPB-4), Volume 4


Book Description

To show the importance of stochastic processes in the change of gene frequencies, the authors discuss topics ranging from molecular evolution to two-locus problems in terms of diffusion models. Throughout their discussion, they come to grips with one of the most challenging problems in population genetics--the ways in which genetic variability is maintained in Mendelian populations. R.A. Fisher, J.B.S. Haldane, and Sewall Wright, in pioneering works, confirmed the usefulness of mathematical theory in population genetics. The synthesis their work achieved is recognized today as mathematical genetics, that branch of genetics whose aim is to investigate the laws governing the genetic structure of natural populations and, consequently, to clarify the mechanisms of evolution. For the benefit of population geneticists without advanced mathematical training, Professors Kimura and Ohta use verbal description rather than mathematical symbolism wherever practicable. A mathematical appendix is included.




A Primer of Ecological Genetics


Book Description

This book covers basic concepts in population and quantitative genetics, including measuring selection on phenotypic traits. The emphasis is on material applicable to field studies of evolution focusing on ecologically important traits. Topics addressed are critical for training students in ecology, evolution, conservation biology, agriculture, forestry, and wildlife management. Many texts in this field are too complex and mathematical to allow the average beginning student to readily grasp the key concepts. A Primer of Ecological Genetics, in contrast, employs mathematics and statistics-fully explained, but at a less advanced level-as tools to improve understanding of biological principles. The main goal is to enable students to understand the concepts well enough that they can gain entry into the primary literature. Integration of the different chapters of the book shows students how diverse concepts relate to each other.




Genetics of Speciation


Book Description

The nature of populations, races, subspecies, and species. Genetic basis of isolation. Origin of isolation - theoretical. Origin of isolation - experimental. The nature of the speciation process.




In the Light of Evolution


Book Description

The Arthur M. Sackler Colloquia of the National Academy of Sciences address scientific topics of broad and current interest, cutting across the boundaries of traditional disciplines. Each year, four or five such colloquia are scheduled, typically two days in length and international in scope. Colloquia are organized by a member of the Academy, often with the assistance of an organizing committee, and feature presentations by leading scientists in the field and discussions with a hundred or more researchers with an interest in the topic. Colloquia presentations are recorded and posted on the National Academy of Sciences Sackler colloquia website and published on CD-ROM. These Colloquia are made possible by a generous gift from Mrs. Jill Sackler, in memory of her husband, Arthur M. Sackler.




Genetics and the Extinction of Species


Book Description

Darwin's Origin of Species and Dobzhansky's Genetics and the Origin of Species have been the cornerstones of modern evolutionary and population genetic theory for the past hundred years, but in the twenty-first century, biologists will face graver problems of extinction. In this collection, a team of leading biologists demonstrates why the burgeoning field of conservation biology must continue to rely on the insights of population genetics if we are to preserve the diversity of living species. Technological and theoretical developments throughout the 1990s have allowed for important new insights into how populations have evolved in response to past selection pressures, while providing a broad new understanding of the genetic structure of natural populations. The authors explore these advances and argue for the applicability of new genetic methods in conservation biology. The volume covers such topics as the reasons for extinctions, the best ways to measure biodiversity, and the benefits and drawbacks of policies like captive breeding. Genetics and the Extinction of Species is a rich source of information for biologists and policymakers who want to learn more about the host of tools, theories, and approaches available for conserving biodiversity. In addition to the editors, the contributors to the volume are William Amos, Rebecca Cann, Kathryn Rodriguez-Clark, Leslie Douglas, Leonard Freed, Paul Harvey, Kent Holsinger, Russell Lande, and Helen Steers.