Genome Editing Tools and Gene Drives


Book Description

Genome-editing methods are becoming routine tools for molecular and cell biologists. Such tools include ZFNs, CRISPR, megaTALs and TALENs. These tools are revolutionizing the creation of precisely manipulated genomes to modify the characteristics of organisms or cells. Additionally, gene drives have altered the way we understand inheritance laws. They give us the ability to have total control of the inheritance of traits of choice and importance. This succinct volume summarizes the history, principles and applications – as well as the advantages and disadvantages – of each of these tools and various kinds of gene drives. The book is part of a program to produce books helpful to students and faculties of science at colleges and universities. This volume in the Pocket Guides to Biomedical Sciences series will help demystify these technologies. The book fills the gap between established conventional methods and the novel and exciting newly introduced tools of genome editing and gene drives. It will help young scientists understand the emerging genome-editing tools and gene drives, thereby promoting related research and adoption. Key Features Extensively reviews the current genome-editing tools and gene drives Clarifies the targeting mechanisms and specificity of genome-editing tools Details many different types of natural and synthetic gene drives Highlights concerns with gene drives and genome-editing tools Related Titles Brown, T. A. Genomes 4 (ISBN 978-0-8153-4508-4) Samuelsson, T. The Human Genome in Health and Disease: A Story in Four Letters (ISBN 978-0-8153-4591-6) Soh, J., et al. Genome Annotation (ISBN 978-1-4398-4117-4)




Genome Editing Tools and Gene Drives


Book Description

Genome editing methods are becoming routine tools for molecular and cell biologists. Such tools include ZFNs, CRISPR, megaTALs and TALENs. These tools are revolutionizing the creation of precisely manipulated genomes to modify the characteristics of organisms or cells. Additionally, gene drives have altered the way we understand inheritance laws. They give us the ability to have total control of the inheritance of traits of choice and importance. This succinct volume summarizes the history, principles, and applications - as well as the advantages and disadvantages - of each of these tools and various kinds of gene drives. The book is part of a program to produce books helpful to students and faculties of science at colleges and universities. This volume in the Pocket Guides to Biomedical Sciences series will help demystify these technologies. The book fills the gap between established conventional methods and the novel and exciting newly introduced tools of genome editing and gene drives. It will help young scientists understand the emerging genome editing tools and gene drives thereby promoting related research and adoption. Key Features The book extensively reviews the current genome editing tools and gene drives. Clarifies their targeting mechanisms and specificity of genome editing tools. Details many different types of natural and synthetic gene drives. Highlights concerns with gene drives and genome editing tools. Related Titles Brown, T. A. Genomes 4 (ISBN 978-0-8153-4508-4) Soh, J., et al. Genome Annotation (ISBN 978-1-4398-4117-4) Samuelsson, T. The Human Genome in Health and Disease: A Story in Four Letters (ISBN 978-0-8153-4591-6)




Gene Drives on the Horizon


Book Description

Research on gene drive systems is rapidly advancing. Many proposed applications of gene drive research aim to solve environmental and public health challenges, including the reduction of poverty and the burden of vector-borne diseases, such as malaria and dengue, which disproportionately impact low and middle income countries. However, due to their intrinsic qualities of rapid spread and irreversibility, gene drive systems raise many questions with respect to their safety relative to public and environmental health. Because gene drive systems are designed to alter the environments we share in ways that will be hard to anticipate and impossible to completely roll back, questions about the ethics surrounding use of this research are complex and will require very careful exploration. Gene Drives on the Horizon outlines the state of knowledge relative to the science, ethics, public engagement, and risk assessment as they pertain to research directions of gene drive systems and governance of the research process. This report offers principles for responsible practices of gene drive research and related applications for use by investigators, their institutions, the research funders, and regulators.




Human Genome Editing


Book Description

Genome editing is a powerful new tool for making precise alterations to an organism's genetic material. Recent scientific advances have made genome editing more efficient, precise, and flexible than ever before. These advances have spurred an explosion of interest from around the globe in the possible ways in which genome editing can improve human health. The speed at which these technologies are being developed and applied has led many policymakers and stakeholders to express concern about whether appropriate systems are in place to govern these technologies and how and when the public should be engaged in these decisions. Human Genome Editing considers important questions about the human application of genome editing including: balancing potential benefits with unintended risks, governing the use of genome editing, incorporating societal values into clinical applications and policy decisions, and respecting the inevitable differences across nations and cultures that will shape how and whether to use these new technologies. This report proposes criteria for heritable germline editing, provides conclusions on the crucial need for public education and engagement, and presents 7 general principles for the governance of human genome editing.




Genome Engineering via CRISPR-Cas9 System


Book Description

Genome Engineering via CRISPR-Cas9 Systems presents a compilation of chapters from eminent scientists from across the globe who have established expertise in working with CRISPR-Cas9 systems. Currently, targeted genome engineering is a key technology for basic science, biomedical and industrial applications due to the relative simplicity to which they can be designed, used and applied. However, it is not easy to find relevant information gathered in a single source. The book contains a wide range of applications of CRISPR in research of bacteria, virus, algae, plant and mammalian and also discusses the modeling of drosophila, zebra fish and protozoan, among others. Other topics covered include diagnosis, sensor and therapeutic applications, as well as ethical and regulatory issues. This book is a valuable source not only for beginners in genome engineering, but also researchers, clinicians, stakeholders, policy makers, and practitioners interested in the potential of CRISPR-Cas9 in several fields.







The CRISPR/Cas Tool Kit for Genome Editing


Book Description

This book discusses CRISPR/Cas- one of the most powerful tools available to scientists for genome editing. CRISPR/Cas is not only a genome editing tool, but researchers have also engineered it for gene regulation, genome imaging, base editing and epigenome regulations. This book describes the entire toolkit for CRISPR/Cas. The opening section gives an introduction to the technique and compares it with other genome editing tools. Further section gives a historical perspective of the tool, along with its detailed classification. The next chapters describe bioinformatic tools in CRISPR/Cas, and delivery methods for CRISPR/Cas. The book also discusses about the applications of CRISPR/Cas beyond genome editing and use of CRISPR for rewriting genetic codes. The book dedicates a section to the use of CRISPR in plants. The book culminates with a chapter on the current status, challenges and shortcomings of the CRISPR/Cas genome editing tool. The book would be highly interesting to students and researchers in molecular biology, biochemistry, biotechnology, food science, agriculture and plant sciences.




Gene Editing, Law, and the Environment


Book Description

Technologies like CRISPR and gene drives are ushering in a new era of genetic engineering, wherein the technical means to modify DNA are cheaper, faster, more accurate, more widely accessible, and with more far-reaching effects than ever before. These cutting-edge technologies raise legal, ethical, cultural, and ecological questions that are so broad and consequential for both human and other-than-human life that they can be difficult to grasp. What is clear, however, is that the power to directly alter not just a singular form of life but also the genetics of entire species and thus the composition of ecosystems is currently both inadequately regulated and undertheorized. In Gene Editing, Law, and the Environment, distinguished scholars from law, the life sciences, philosophy, environmental studies, science and technology studies, animal health, and religious studies examine what is at stake with these new biotechnologies for life and law, both human and beyond.




Genes, Genomes and Society


Book Description

With CRISPR/Cas gene editing tools in hand, we are currently experiencing a new dimension in genetic engineering. But where should the journey lead? Should we treat diseases or better repair them genetically? Will the new genetic engineering, combined with modern reproductive biology, lead to designer babies? And: May we allow a liberalization of these techniques as citizen science? New methods can precisely alter the genetic material - and they leave no traces. This gene and genome surgery thrives on increasing knowledge about the mode of action of genes, those trait-giving regions in the genome. This knowledge is being applied in practice, particularly in the breeding of more resistant and higher-yielding crops. And what about us? The author shows that gene variants have long been associated not only with diseases, but also with nutritional preferences or intelligence. Therapeutic and optimization options are close at hand. What effect does the environment have on the expression of genetic material? Genes can be shaped during a person's lifetime by the environment, nutrition or experiences and thus passed on to their offspring in a modified form. So, does society have a new form of long-term responsibility for (epi)genetic integrity? In this vividly and comprehensibly written book, the author explains the state of genetic engineering without assuming too much prior knowledge and invites an open dialogue on this ambivalent topic. Get your own idea of the fascinating yet intimidating possibilities of genetic engineering. Where do you stand on the issue? With the help of this book, you have the chance to form a differentiated opinion. This book is a translation of the original German 1st edition Generation Gen-Schere by Röbbe Wünschiers, published by Springer Fachmedien Wiesbaden GmbH, part of Springer Nature in 2019. The translation was done with the help of artificial intelligence (machine translation by the service DeepL.com). The text was subsequently revised by the author. Springer Nature works continuously to further the development of tools for the production of books and on the related technologies to support the authors.




Editing Humanity


Book Description

One of the world's leading experts on genetics unravels one of the most important breakthroughs in modern science and medicine. IIf our genes are, to a great extent, our destiny, then what would happen if mankind could engineer and alter the very essence of our DNA coding? Millions might be spared the devastating effects of hereditary disease or the challenges of disability, whether it was the pain of sickle-cell anemia to the ravages of Huntington’s disease. But this power to “play God” also raises major ethical questions and poses threats for potential misuse. For decades, these questions have lived exclusively in the realm of science fiction, but as Kevin Davies powerfully reveals in his new book, this is all about to change. Engrossing and page-turning, Editing Humanity takes readers inside the fascinating world of a new gene editing technology called CRISPR, a high-powered genetic toolkit that enables scientists to not only engineer but to edit the DNA of any organism down to the individual building blocks of the genetic code. Davies introduces readers to arguably the most profound scientific breakthrough of our time. He tracks the scientists on the front lines of its research to the patients whose powerful stories bring the narrative movingly to human scale. Though the birth of the “CRISPR babies” in China made international news, there is much more to the story of CRISPR than headlines seemingly ripped from science fiction. In Editing Humanity, Davies sheds light on the implications that this new technology can have on our everyday lives and in the lives of generations to come.