Genomics-aided Breeding Strategies for Biotic Stress in Grain legumes


Book Description

This contributed volume explores the latest breakthroughs in genetic and genomic resources for enhancing biotic stress responses in grain legumes – including minor ones. It covers the advances made to date, including gene identification, transcriptomics, proteomics, transgenics, genome editing, genomic selection, epigenetic breeding, and speed breeding related to different biotic stresses. Authored by crop-specific experts, the chapters in this book are essential resources for those directly involved in improving grain legume crops. Legumes play a vital role in ensuring food and nutritional security, enhancing soil quality, and promoting environmental sustainability. Rich in protein, they are essential in preventing hunger and malnutrition while adding to dietary diversity. However, as these crops are commonly grown in marginal lands with poor inputs, they are highly susceptible to biotic stresses such as diseases and pests, which can cause significant yield losses. This book consolidates all available knowledge about genetic and genomic aspects of biotic stress responses in various grain legumes. It is a must-have resource for all stakeholders involved in grain legume improvement. Whether you are a breeder, pathologist, biotechnologist, seed production specialist, market manager, graduate or post-graduate student, or any other industry professional, this book serves as an excellent guide to help you stay at the forefront of grain legume improvement.




Genetic and Genomic Resources of Grain Legume Improvement


Book Description

Grain legumes, including common-bean, chickpea, pigeonpea, pea, cowpea, lentil and others, form important constituents of global diets, both vegetarian and non-vegetarian. Despite this significant role, global production has increased only marginally in the past 50 years. The slow production growth, along with a rising human population and improved buying capacity has substantially reduced the per capita availability of food legumes. Changes in environmental climate have also had significant impact on production, creating a need to identify stable donors among genetic resources for environmentally robust genes and designing crops resilient to climate change. Genetic and Genomic Resources of Grain Legume Improvement is the first book to bring together the latest resources in plant genetics and genomics to facilitate the identification of specific germplasm, trait mapping and allele mining to more effectively develop biotic and abiotic-stress-resistant grains. This book will be an invaluable resource for researchers, crop biologists and students working with crop development. Explores origin, distribution and diversity of grain legumes Presents information on germplasm collection, evaluation and maintenance Offers insight into pre-breeding/germplasm enhancement efforts Integrates genomic and genetic resources in crop improvement Internationally contributed work







Legume Breeding in Transition: Innovation and Outlook


Book Description

Legumes (family Fabaceae) comprise a diverse range of crops grown worldwide, which are important constituents of sustainable agriculture and harbour a role in improving human and livestock health. Legumes serve as a rich source of plant-based proteins, rank second in nutrition value after cereals, and are ideal to supplement a protein-deficient cereal-based human diet. Legumes also provide other essential services to agriculture through their ability to fix atmospheric nitrogen, recycle nutrients, enhance soil carbon content, and diversify cropping systems. Legume production and seed quality are affected by a range of biotic (pests, insect diseases, and weeds) and abiotic stresses (drought, heat, frost, and salinity). In addition to this, rapidly changing climate, shrinking arable land, erratic rainfalls, and depleting water and other natural resources impact legume production and threaten food and nutrition security worldwide. Persistent demand for legume crops is existing to fulfil the food requirements of an ever-growing human population. Therefore, legume breeders and geneticists have employed different conventional and modern breeding strategies to improve yield, resistance to biotic and abiotic stresses, grain quality, and nutritional and nutraceutical properties. Conventional breeding strategies are laborious, time consuming, expensive, and inefficient to achieve the desired goals. However, advanced breeding techniques such as alien gene introgression, genomics-assisted breeding, transgenic technology, speed breeding, association and mapping studies, genome editing, and omics will contribute to sustainable agriculture and food security.




Advances in Plant Breeding Strategies: Legumes


Book Description

This book examines the development of innovative modern methodologies towards augmenting conventional plant breeding, in individual crops, for the production of new crop varieties under the increasingly limiting environmental and cultivation factors to achieve sustainable agricultural production, enhanced food security, in addition to providing raw materials for innovative industrial products and pharmaceuticals. This is Vol 7, subtitled Legumes, focuses on advances in breeding strategies using both traditional and modern approaches for the improvement of individual legume crops. Included in this volume are Adzuki bean, Black gram, Chickpea Cluster bean, Common bean, Cowpea, Faba bean, Hyacinth bean, Lentil, Mung bean, Pigeonpea and Soybean. This volume is contributed by 57 internationally reputable scientists from 9 countries. Each chapter comprehensively reviews the modern literature on the subject and reflects the authors own experience.




Allele Mining for Genomic Designing of Grain Legume Crops


Book Description

This book deliberates on the concept, strategies, tools, and techniques of allele mining in grain legume crops and its application potential in genome elucidation and improvement, including studying allele evolution, discovery of superior alleles, discerning new haplotypes, assessment of intra- and interspecific similarity, and also studies of gene expression and gene prediction. Available gene pools in global germplasm collections specifically consisting of wild allied species and local landraces for almost all major crops have facilitated allele mining. Development of advanced genomic techniques, including PCR-based allele priming and EcoTILLING-based allele mining, is being widely used now for mining superior alleles. Allele's discovery has become more relevant now for employing molecular breeding to develop designed crop varieties matching consumer needs, and also with genome plasticity to adapt to climate change scenarios. All these concepts and strategies, along with precise success stories, are presented in the chapters dedicated to the major grain legume crops. 1. The first book on the novel strategy of allele mining in grain legume crops for precise breeding. 2. Presents genomic strategies for mining superior alleles underlying agronomic traits from genomic resources. 3. Depicts case studies of PCR-based allele priming and EcoTILLING-based allele mining. 4. Elaborates on gene discovery and gene prediction in major grain legume crops. This book will be useful to students and faculties in various plant science disciplines, including genetics, genomics, molecular breeding, agronomy, and bioinformatics; to scientists in seed industries; and also to policymakers and funding agencies interested in crop improvement.




Legumes in the Omic Era


Book Description

Legumes in the Omic Era provides a timely review of recent advances in legume genomics research and application. In this post-genomic era enormous amount of biological information is available which could be of huge potential use for crop improvement applications. This aspect of genomics assisted plant breeding is focused throughout the book for all the important grain legume crops. Role of functional genomics and importance of bioinformatics tools in present day genomics and molecular breeding research is also discussed in detail. Use of molecular tools for nutritional fortification of grain legume is briefly presented. A chapter also been contributed on fungal disease resistance to elucidate potential application of genomic tools in molecular breeding of grain legume species. The book contains fifteen chapters contributed by 50 scientists from different countries who are actively involved in analyzing and improving particular legume genome. This book will serve as reference resource to legumes researchers for use of genome information in improvement of major legume crops. Dr Sanjeev Gupta is Principal Scientist/Project Coordinator-All India Coordinated Research Project on Vigna Crops at Indian Institute of Pulses Research (IIPR), Kanpur. He has more than two decades of research experience in grain legume breeding and developed a number of high yielding cultivars in grain legumes. He is authored numerous research papers published in peer-reviewed journals and edited several books in plant breeding aspects. He was the Organizing Secretary of the International Grain Legume Conference, 2009 held in the Indian Institute of Pulses Research, Kanpur, India. He has travelled across the continents to present his research several times. He is recipient of several awards for his research and literary contributions Dr. Nagasamy Nadarajan is the Director of the Indian Institute of Pulses Research (IIPR), Kanpur. He has more than three decades of teaching and research experience and developed more than fifteen legume and cereal cultivars. He has to his credits more than 200 peer-reviewed research publications. He has guided several graduate students for Masters and Doctoral degrees in food legume breeding and genetics research. He has authored a book in biometrics which is one of the most popular books among the agriculture graduate students in India. He is the recipient of three international and six national awards and honours for his outstanding contributions Mr. Debjyoti Sen Gupta is the ICAR International Fellow and Ph.D. candidate at North Dakota State University (NDSU), Fargo, USA. Recently, he visited Department of Crop and Soil Sciences, Washington State University, Pullman, USA for high throughput genotyping work. Before joining at NDSU he was serving as the Scientist in the Indian Institute of Pulses Research (IIPR). He has authored several research articles, review articles and book chapters in the peer-reviewed journals and books from reputed publishers like Springer, CABI etc. He is recipient of several fellowships like CSIR-JRF, New Delhi; ICAR-JRF, New Delhi throughout his graduate study programs.




Genomic Designing for Biotic Stress Resistant Pulse Crops


Book Description

Biotic stresses cause yield loss of 31-42% in crops in addition to 6-20% during post-harvest stage. Understanding interaction of crop plants to the biotic stresses caused by insects, bacteria, fungi, viruses, and oomycetes, etc. is important to develop resistant crop varieties. Knowledge on the advanced genetic and genomic crop improvement strategies including molecular breeding, transgenics, genomic-assisted breeding and the recently emerging genome editing for developing resistant varieties in pulse crops is imperative for addressing FPNEE (food, health, nutrition. energy and environment) security. Whole genome sequencing of these crops followed by genotyping-by-sequencing have facilitated precise information about the genes conferring resistance useful for gene discovery, allele mining and shuttle breeding which in turn opened up the scope for 'designing' crop genomes with resistance to biotic stresses. The nine chapters each dedicated to a pulse crop in this volume elucidate on different types of biotic stress agents and their effects on and interaction with the crop plants; enumerate on the available genetic diversity with regard to biotic stress resistance among available cultivars; illuminate on the potential gene pools for utilization in interspecific gene transfer; present brief on the classical genetics of stress resistance and traditional breeding for transferring them to their cultivated counterparts; depict the success stories of genetic engineering for developing biotic stress resistant varieties; discuss on molecular mapping of genes and QTLs underlying biotic stress resistance and their marker-assisted introgression into elite varieties; enunciate on different emerging genomics-aided techniques including genomic selection, allele mining, gene discovery and gene pyramiding for developing resistant crop varieties with higher quantity and quality of yields; and also elaborate some case studies on genome editing focusing on specific genes for generating disease and insect resistant crops.




Genetics, Genomics and Breeding of Cool Season Grain Legumes


Book Description

Cool season grain legumes including pea, faba bean, lentil, chickpea, and grass pea are extensively grown in many parts of the world. They are a primary source of proteins in human diet. This volume deals with the most recent advances in genetics, genomics, and breeding of these crops. The "state of the art" for the individual crops differs; howeve




Advances in Plant Breeding Strategies: Agronomic, Abiotic and Biotic Stress Traits


Book Description

The basic concept of this book is to examine the use of innovative methods augmenting traditional plant breeding towards the development of new crop varieties under different environmental conditions to achieve sustainable food production. This book consists of two volumes: Volume 1 subtitled Breeding, Biotechnology and Molecular Tools and Volume 2 subtitled Agronomic, Abiotic and Biotic Stress Traits. This is volume 2 which contains 18 chapters highlighting breeding strategies for specific plant traits including improved nutritional and pharmaceutical properties as well as enhanced tolerance to insects, diseases, drought, salinity and temperature extremes expected under predicted global climate change.