Genetics and Evolution of Infectious Diseases


Book Description

Genetics and Evolution of Infectious Diseases, Third Edition discusses the evolving field of infectious diseases and their continued impact on the health of populations, especially in resource-limited areas of the world where they must confront the dual burden of death and disability due to infectious and chronic illnesses. Although substantial gains have been made in public health interventions for the treatment, prevention, and control of infectious diseases, in recent decades the world has witnessed the emergence of the human immunodeficiency virus (HIV) and the COVID-19 pandemic, increasing antimicrobial resistance, and the emergence of many new bacterial, fungal, parasitic, and viral pathogens. Fully updated and revised, this new edition presents the consequences of such diseases, the evolution of infectious diseases, the genetics of host-pathogen relationship, and the control and prevention strategies that are, or can be, developed. This book offers valuable information to biomedical researchers, clinicians, public health practitioners, decisions-makers, and students and postgraduates studying infectious diseases, microbiology, medicine, and public health that is relevant to the control and prevention of neglected and emerging worldwide diseases. - Takes an integrated approach to infectious diseases - Provides the latest developments in the field of infectious diseases - Focuses on the contribution of evolutionary and genomic studies for the study and control of transmissible diseases - Includes updated and revised contributions from leading authorities, along with six new chapters




Genomics of Pathogens and Vectors


Book Description

We are delighted to announce a thematic issue focused on the molecular epidemiology of pathogens and vectors of disease. In the last decades, genomics has revolutionized many areas of science, technology, and health by enlightening our understanding of the intricate molecular biology of pathogens and vectors. Despite these advances viral, bacterial, fungal, and parasitic pathogens still cause huge economic and health losses around the world. Moreover, there is compelling evidence of an expansion of their impact linked to global warming, anthropogenic activities and/or limitations in control strategies. Vectored pathogens are also highly relevant, causing diseases with severe morbidity and mortality such as malaria, dengue fever and schistosomiasis. The expanding geographical reach of vectors due to adaptation and/or climate change is leading to outbreaks in previously unaffected areas. Substantial challenges remain to track and trace pathogens and vectors through molecular signatures in order to understand their impact to human and animal health in different environments.







Biodefense in the Age of Synthetic Biology


Book Description

Scientific advances over the past several decades have accelerated the ability to engineer existing organisms and to potentially create novel ones not found in nature. Synthetic biology, which collectively refers to concepts, approaches, and tools that enable the modification or creation of biological organisms, is being pursued overwhelmingly for beneficial purposes ranging from reducing the burden of disease to improving agricultural yields to remediating pollution. Although the contributions synthetic biology can make in these and other areas hold great promise, it is also possible to imagine malicious uses that could threaten U.S. citizens and military personnel. Making informed decisions about how to address such concerns requires a realistic assessment of the capabilities that could be misused. Biodefense in the Age of Synthetic Biology explores and envisions potential misuses of synthetic biology. This report develops a framework to guide an assessment of the security concerns related to advances in synthetic biology, assesses the levels of concern warranted for such advances, and identifies options that could help mitigate those concerns.




Parasite Genomics


Book Description

This detailed book provides a comprehensive series of innovative research techniques and methodologies applied to the parasite genomics research area, all applying different approaches to analyzing parasite genomes and furthering the study of genetic complexity and the mechanisms of regulation. Beginning with chapters on novel sequencing and the bioinformatics pipeline, the volume continues by exploring diagnostic approaches using genomic tools, host-parasite interactions, as well as the genomics of parasite-derived extracellular vesicles. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Parasite Genomics: Methods and Protocols creates a detailed picture of genomic approaches for researchers seeking a better understanding of characterizing parasite nucleic acid content.




Ecological Aspects for Application of Genetically Modified Mosquitoes


Book Description

This book is the reflection of a workshop, held in June 2002. Experts on mosquito ecology met for the first time to discuss the current knowledge of mosquito ecology with respect to GM-insect technology. Emphasis of the workshop was on evaluating how human health and natural ecosystems, including target wild-mosquito populations, will respond to the invasion of GM vectors. This volume will stimulate discussion by clearly showing the importance of vector ecology for prevention of vector-borne diseases.







The Genus Yersinia:


Book Description

The 9th International Symposium on Yersinia was held in Lexington, Kentucky, USA on October 10-14, 2006. Over 250 Yersinia researchers from 18 countries gathered to present and discuss their research. In addition to 37 oral presentations, there were 150 poster presentations. This Symposium volume is based on selected presentations from the meeting and contains both reviews and research articles. It is divided into six topic areas: 1) genomics; 2) structure and metabolism; 3) regulatory mechanisms; 4) pathogenesis and host interactions; 5) molecular epidemiology and detection; and 6) vaccine and antimicrobial therapy development. Consequently, this volume covers a wide range of current research areas in the Yersinia field.




Biology of Disease Vectors


Book Description

Biology of Disease Vectors presents a comprehensive and advanced discussion of disease vectors and what the future may hold for their control. This edition examines the control of disease vectors through topics such as general biological requirements of vectors, epidemiology, physiology and molecular biology, genetics, principles of control and insecticide resistance. Methods of maintaining vectors in the laboratory are also described in detail.No other single volume includes both basic information on vectors, as well as chapters on cutting-edge topics, authored by the leading experts in the field. The first edition of Biology of Disease Vectors was a landmark text, and this edition promises to have even more impact as a reference for current thought and techniques in vector biology.Current - each chapter represents the present state of knowledge in the subject areaAuthoritative - authors include leading researchers in the fieldComplete - provides both independent investigator and the student with a single reference volume which adopts an explicitly evolutionary viewpoint throuoghout all chapters. Useful - conceptual frameworks for all subject areas include crucial information needed for application to difficult problems of controlling vector-borne diseases




The Molecular Biology of Insect Disease Vectors


Book Description

Only one generation ago, entomology was a proudly isolated discipline. In Comstock Hall, the building of the Department of Entomology at Cornell University where I was first introduced to experimental science in the laboratory of Tom Eisner, those of us interested in the chemistry of life felt like interlopers. In the 35 years that have elapsed since then, all of biology has changed, and entomology with it. Arrogant molecular biologists and resentful classical biologists might think that what has happened is a hostile take-over of biology by molecular biology. But they are wrong. More and more we now understand that the events were happier and much more exciting, amounting to a new synthesis. Molecular Biology, which was initially focused on the simplest of organisms, bacteria and viruses, broke out of its confines after the initial fundamental questions were answered - the structure of DNA, the genetic code, the nature of regulatory genes - and, importantly, as its methods became more and more generally applicable. The recombinant DNA revo lution of the 1970s, the development of techniques for sequencing macromolecules, the polymerase chain reaction, new molecular methods of genetic analysis, all brought molecular biology face to face with the infinite complexity and the exuber ant diversity of life. Molecular biology itself stopped being an isolated diScipline, pre occupied with the universal laws of life, and became an approach to addressing fas cinating specific problems from every field of biology.