GeoComputational Analysis and Modeling of Regional Systems


Book Description

The contributed volume collects cutting-edge research in GeoComputational Analysis of Regional Systems. The contributions emphasize methodological innovations or substantive breakthroughs on many facets of the socio-economic and environmental reality of regional contexts.




Spatial Analysis and Location Modeling in Urban and Regional Systems


Book Description

This contributed volume collects cutting-edge research in Geographic Information Science & Technologies, Location Modeling, and Spatial Analysis of Urban and Regional Systems. The contributions emphasize methodological innovations or substantive breakthroughs on many facets of the socio-economic and environmental reality of urban and regional contexts.




Spatial Analysis and GeoComputation


Book Description

This volume contains selected essays of Manfred M. Fischer in the field of spatial analysis from the perspective of GeoComputation. The volume is structured in four parts, from broad issues in spatial analysis and the role of GIS to computational intelligence technologies such as neural networks. The third part provides the theoretical framework required for adaptive pattern classifiers in remote sensing environments. The final section outlines the latest in neural spatial interaction modeling.




Geocomputation


Book Description

Geocomputation is the use of software and computing power to solve complex spatial problems. It is gaining increasing importance in the era of the ‘big data’ revolution, of ‘smart cities’, of crowdsourced data, and of associated applications for viewing and managing data geographically - like Google Maps. This student focused book: Provides a selection of practical examples of geocomputational techniques and ‘hot topics’ written by world leading practitioners. Integrates supporting materials in each chapter, such as code and data, enabling readers to work through the examples themselves. Chapters provide highly applied and practical discussions of: Visualisation and exploratory spatial data analysis Space time modelling Spatial algorithms Spatial regression and statistics Enabling interactions through the use of neogeography All chapters are uniform in design and each includes an introduction, case studies, conclusions - drawing together the generalities of the introduction and specific findings from the case study application – and guidance for further reading. This accessible text has been specifically designed for those readers who are new to Geocomputation as an area of research, showing how complex real-world problems can be solved through the integration of technology, data, and geocomputational methods. This is the applied primer for Geocomputation in the social sciences.




Geocomputation with R


Book Description

Geocomputation with R is for people who want to analyze, visualize and model geographic data with open source software. It is based on R, a statistical programming language that has powerful data processing, visualization, and geospatial capabilities. The book equips you with the knowledge and skills to tackle a wide range of issues manifested in geographic data, including those with scientific, societal, and environmental implications. This book will interest people from many backgrounds, especially Geographic Information Systems (GIS) users interested in applying their domain-specific knowledge in a powerful open source language for data science, and R users interested in extending their skills to handle spatial data. The book is divided into three parts: (I) Foundations, aimed at getting you up-to-speed with geographic data in R, (II) extensions, which covers advanced techniques, and (III) applications to real-world problems. The chapters cover progressively more advanced topics, with early chapters providing strong foundations on which the later chapters build. Part I describes the nature of spatial datasets in R and methods for manipulating them. It also covers geographic data import/export and transforming coordinate reference systems. Part II represents methods that build on these foundations. It covers advanced map making (including web mapping), "bridges" to GIS, sharing reproducible code, and how to do cross-validation in the presence of spatial autocorrelation. Part III applies the knowledge gained to tackle real-world problems, including representing and modeling transport systems, finding optimal locations for stores or services, and ecological modeling. Exercises at the end of each chapter give you the skills needed to tackle a range of geospatial problems. Solutions for each chapter and supplementary materials providing extended examples are available at https://geocompr.github.io/geocompkg/articles/.




Spatial Analysis and Modeling in Geographical Transformation Process


Book Description

Currently, spatial analysis is becoming more important than ever because enormous volumes of spatial data are available from different sources, such as GPS, Remote Sensing, and others. This book deals with spatial analysis and modelling. It provides a comprehensive discussion of spatial analysis, methods, and approaches related to human settlements and associated environment. Key contributions with empirical case studies from Iran, Philippines, Vietnam, Thailand, Nepal, and Japan that apply spatial analysis including autocorrelation, fuzzy, voronoi, cellular automata, analytic hierarchy process, artificial neural network, spatial metrics, spatial statistics, regression, and remote sensing mapping techniques are compiled comprehensively. The core value of this book is a wide variety of results with state of the art discussion including empirical case studies. It provides a milestone reference to students, researchers, planners, and other practitioners dealing the spatial problems on urban and regional issues. We are pleased to announce that this book has been presented with the 2011 publishing award from the GIS Association of Japan. We would like to congratulate the authors!




Agent-Based Modelling and Geographical Information Systems


Book Description

This is the era of Big Data and computational social science. It is an era that requires tools which can do more than visualise data but also model the complex relation between data and human action, and interaction. Agent-Based Models (ABM) - computational models which simulate human action and interaction – do just that. This textbook explains how to design and build ABM and how to link the models to Geographical Information Systems. It guides you from the basics through to constructing more complex models which work with data and human behaviour in a spatial context. All of the fundamental concepts are explained and related to practical examples to facilitate learning (with models developed in NetLogo with all code examples available on the accompanying website). You will be able to use these models to develop your own applications and link, where appropriate, to Geographical Information Systems. All of the key ideas and methods are explained in detail: geographical modelling; an introduction to ABM; the fundamentals of Geographical Information Science; why ABM and GIS; using QGIS; designing and building an ABM; calibration and validation; modelling human behavior. An applied primer, that provides fundamental knowledge and practical skills, it will provide you with the skills to build and run your own models, and to begin your own research projects.




Modelling Geographical Systems


Book Description

This book presents a selection of innovative ideas currently shaping the development and testing of geographical systems models by means of statistical and computational approaches. It spans all geographic scales, deals with both individuals and aggregates, and represents natural, human, and integrated spatial systems. This book is relevant to researchers, (post and under)graduates, and professionals in the areas of quantitative geography, spatial analysis, spatial modelling, and geographical information sciences.




Soft Computing Evaluation Logic


Book Description

A novel approach to decision engineering, with a verified framework for modeling human reasoning Soft Computing Evaluation Logic provides an in-depth examination of evaluation decision problems and presents comprehensive guidance toward the use of the Logic Scoring of Preference (LSP) method in modeling complex decision criteria. Fully aligned with current developments in computational intelligence, the discussion covers the design and use of LSP criteria for evaluation and comparison in diverse areas, such as search engines, medical conditions, real estate, space management, habitat mitigation projects in ecology, and land use and residential development suitability maps, with versatile transfer to other similar decision-modeling contexts. Human decision making is rife with fuzziness, imprecision, uncertainty, and half-truths—yet humans make evaluation decisions every day. In this book, such decision processes are observed, analyzed, and modeled. The result is graded logic, a soft computing mathematical infrastructure that provides both formal logic and semantic generalizations of classical Boolean logic. Graded logic is used for logic aggregation in the context of evaluation models consistent with observable properties of human reasoning. The LSP method, based on graded logic and logic aggregation, is a vital component of an industrial-strength decision engineering framework. Thus, the book: Provides detailed theoretical background for graded logic Provides a theory of logic aggregators Explains the LSP method for designing complex evaluation criteria and their use Shows techniques for evaluation, comparison, and selection of complex systems, as well as the cost/suitability analysis, optimization, sensitivity analysis, tradeoff analysis, and missingness-tolerant aggregation Includes a survey of available LSP software tools, including ISEE, ANSY and LSP.NT. With quantitative modeling of human reasoning, novel approaches to modeling decision criteria, and a verified decision engineering framework applicable to a broad array of applications, this book is an invaluable resource for graduate students, researchers, and practitioners working within the decision engineering realm.




GeoComputation


Book Description

A revision of Openshaw and Abrahart's seminal work, GeoComputation, Second Edition retains influences of its originators while also providing updated, state-of-the-art information on changes in the computational environment. In keeping with the field's development, this new edition takes a broader view and provides comprehensive coverage across the