Generalisation of Geographic Information


Book Description

Theoretical and Applied Solutions in Multi Scale Mapping Users have come to expect instant access to up-to-date geographical information, with global coverage--presented at widely varying levels of detail, as digital and paper products; customisable data that can readily combined with other geographic information. These requirements present an immense challenge to those supporting the delivery of such services (National Mapping Agencies (NMA), Government Departments, and private business. Generalisation of Geographic Information: Cartographic Modelling and Applications provides detailed review of state of the art technologies associated with these challenges, including the most recent developments in cartometric analysis techniques able to support high levels of automation among multi scale derivation techniques. The book illustrates the application of these ideas within existing and emerging technologies. In addition to providing a comprehensive theoretical underpinning, the book demonstrates how theoretical developments have translated into commercial systems deployed within NMAs. The book explores relevance of open systems in support of collaborative research and open source web based map services. State of the art review on multi scale representation techniques Detailed consideration of database requirements and object modeling in support of emerging applications (3D, mobile) and innovative delivery (map generalisation services) Illustration through existing map production environment implementations Consolidated bibliography (680 entries), 200 illustrations, author and subject index




GIS Modeling in Raster


Book Description

The primary focus of this text is on the process of cartographic modeling and GIS modeling. The text goes beyond cartographic modeling to incorporate supplementary or complementary technologies and logics to show that spatio-temporal modeling is not limited to cartographic modeling, nor to Map Algebra. DeMers consistent, friendly and engaging style has been highly praised by reviewers of this title as well as users of his market leading Fundamentals of Geographic Information Systems.




Geographic Information Systems


Book Description

Geographic Information Systems: Concepts, Methodologies, Tools, and Applications is a collection of knowledge on the latest advancements and research of geographic information systems. This book aims to be useful for academics and practitioners involved in geographical data.




Geographic Information Systems for Geoscientists


Book Description

Geographic Information Systems for Geoscientists: Modelling with GIS provides an introduction to the ideas and practice of GIS to students and professionals from a variety of geoscience backgrounds. The emphasis in the book is to show how spatial data from various sources (principally paper maps, digital images and tabular data from point samples) can be captured in a GIS database, manipulated, and transformed to extract particular features in the data, and combined together to produce new derived maps, that are useful for decision-making and for understanding spatial interrelationship. The book begins by defining the meaning, purpose, and functions of GIS. It then illustrates a typical GIS application. Subsequent chapters discuss methods for organizing spatial data in a GIS; data input and data visualization; transformation of spatial data from one data structure to another; and the combination, analysis, and modeling of maps in both raster and vector formats. This book is intended as both a textbook for a course on GIS, and also for those professional geoscientists who wish to understand something about the subject. Readers with a mathematical bent will get more out of the later chapters, but relatively non-numerate individuals will understand the general purpose and approach, and will be able to apply methods of map modeling to clearly-defined problems.




Geographic Information Systems Demystified


Book Description

Geographic information systems (GIS)--a central repository of geographic data collected from various sources, including satellites and GPS--is emerging as one of the most intriguing and promising high-tech fields. This easy-to-understand resource provides technical and nontechnical professionals, regardless of their background, with an accessible and practical guide to important GIS know-how.




Computing in Geographic Information Systems


Book Description

Capable of acquiring large volumes of data through sensors deployed in air, land, and sea, and making this information readily available in a continuous time frame, the science of geographical information system (GIS) is rapidly evolving. This popular information system is emerging as a platform for scientific visualization, simulation, and computation of spatio-temporal data. New computing techniques are being researched and implemented to match the increasing capability of modern-day computing platforms and easy availability of spatio-temporal data. This has led to the need for the design, analysis, development, and optimization of new algorithms for extracting spatio-temporal patterns from a large volume of spatial data. Computing in Geographic Information Systems considers the computational aspects, and helps students understand the mathematical principles of GIS. It provides a deeper understanding of the algorithms and mathematical methods inherent in the process of designing and developing GIS functions. It examines the associated scientific computations along with the applications of computational geometry, differential geometry, and affine geometry in processing spatial data. It also covers the mathematical aspects of geodesy, cartography, map projection, spatial interpolation, spatial statistics, and coordinate transformation. The book discusses the principles of bathymetry and generation of electronic navigation charts. The book consists of 12 chapters. Chapters one through four delve into the modeling and preprocessing of spatial data and prepares the spatial data as input to the GIS system. Chapters five through eight describe the various techniques of computing the spatial data using different geometric and statically techniques. Chapters nine through eleven define the technique for image registration computation and measurements of spatial objects and phenomenon. Examines cartographic modeling and map projection Covers the mathematical aspects of different map projections Explores some of the spatial analysis techniques and applications of GIS Introduces the bathymetric principles and systems generated using bathymetric charts Explains concepts of differential geometry, affine geometry, and computational geometry Discusses popular analysis and measurement methods used in GIS This text outlines the key concepts encompassing GIS and spatio-temporal information, and is intended for students, researchers, and professionals engaged in analysis, visualization, and estimation of spatio-temporal events.







GIS Fundamentals


Book Description