Understanding Amplitudes


Book Description

Elementary, conceptual, and easy to read, this book describes the methods and techniques used to estimate rock properties from seismic data, based on a sound understanding of the elastic properties of materials and rocks and how the amplitudes of seismic reflections change with those properties. By examining the recorded seismic amplitudes in some detail, we can deduce properties beyond the basic geological structure of the subsurface. We can, using AVO and other amplitude techniques, characterize rocks and the reservoirs inside them with some degree of qualitative, and even quantitative, detail. Mathematics is not ignored, but is kept to a minimum. Intended for geophysicists, seismic acquisition specialists, processors, and interpreters, even those with little previous exposure to ‘quantitative interpretation’, ‘interpretive processing’ or ‘advanced seismic analysis’, this book also would be appropriate for geologists, engineers, and technicians who are familiar with the concepts but need a methodical review as well as managers and businesspeople who would like to obtain an understanding of these concepts.




Atlas of Structural Geological Interpretation from Seismic Images


Book Description

This comprehensive book deals primarily with reflection seismic data in the hydrocarbon industry. It brings together seismic examples from North and South America, Africa, Europe, Asia and Australia and features contributions from eleven international authors who are experts in their field. It provides structural geological examples with full-color illustrations and explanations so that students and industry professionals can get a better understanding of what they are being taught. It also shows seismic images in black and white print and covers compression related structures. Representing a compilation of examples for different types of geological structures, Atlas of Structural Geological Interpretation from Seismic Images is a quick guide to finding analogous structures. It provides extensive coverage of seismic expression of different geological structures, faults, folds, mobile substrates (shale and salt), tectonic and regional structures, and common pitfalls in interpretation. The book also includes an un-interpreted seismic section for every interpreted section so that readers can feel free to draw their own conclusion as per their conceptualization. Provides authoritative source of methodologies for seismic interpretation Indicates sources of uncertainty and give alternative interpretations Directly benefits those working in petroleum industries Includes case studies from a variety of tectonic regimes Atlas of Structural Geological Interpretation from Seismic Images is primarily designed for graduate students in Earth Sciences, researchers, and new entrants in industry who are interested in seismic interpretation.




Seismic Data Analysis


Book Description

Expanding the author's original work on processing to include inversion and interpretation, and including developments in all aspects of conventional processing, this two-volume set is a comprehensive and complete coverage of the modern trends in the seismic industry - from time to depth, from 3D to 4D, from 4D to 4C, and from isotropy to anisotropy.




Seismic Geomorphology


Book Description

We are poised to embark on a new era of discovery in the study of geomorphology. The discipline has a long and illustrious history, but in recent years an entirely new way of studying landscapes and seascapes has been developed. It involves the use of 3D seismic data. Just as CAT scans allow medical staff to view our anatomy in 3D, seismic data now allows Earth scientists to do what the early geomorphologists could only dream of - view tens and hundreds of square kilometres of the Earth's subsurface in 3D and therefore see for the first time how landscapes have evolved through time. This volume demonstrates how Earth scientists are starting to use this relatively new tool to study the dynamic evolution of a range of sedimentary environments.







Seismic Data Analysis Techniques in Hydrocarbon Exploration


Book Description

Seismic Data Analysis Techniques in Hydrocarbon Exploration explains the fundamental concepts and skills used to acquire seismic data in the oil industry and the step-by-step techniques necessary to extract the sections that trap hydrocarbons as well as seismic data interpretation skills. It enhances the ability to interpret seismic data and use that data for basin evaluation, structural modeling of a fault, reservoir characterization, rock physics analysis, field development, and production studies. Understanding and interpreting seismic data is critical to oil and gas exploration companies. Arming young geoscientists with a reference that covers the key principles of seismic data analysis will enhance their job knowledge, skills and performance. A fundamental grasp of seismic data enhances employability and aids scientists in functioning effectively when working with seismic data in industry. - Edited by a team of petroleum geoscientists with more than 30 years of experience in hydrocarbon exploration and data analysis at O&G companies. - More than 200 figures, photographs, and illustrations aid in the understanding of the fundamental concepts and techniques used to acquire seismic data - Takes an easy-to-follow, step-by-step approach to presenting the techniques and skills used to extract the geologic sections from acquired seismic data. - Enhances the geoscientist's effectiveness when using seismic data for field development and other exploration and production studies







Seismic Data Processing


Book Description




Seismic Geology and Basin Analysis


Book Description

Seismic Geology and Basin Analysis: Case Studies on Sedimentary Basins in China introduces the principles, approaches and techniques needed to solve problems using seismic data calibrated with well log, cores and outcrop profiles. The book emphasizes the adoption of seismic techniques into basin analysis and broadens the usage of seismic data in geological research which may be referred to as "seismic geology. The principle of the book is mainly summarized from a series of case studies in different basins in China. In addition, through this book readers can understand the primary characteristics and basin fill evolution of major petroleum basins around the world. When starting research on a basin, researchers and professionals are confronted with how to reveal the general architecture of basin fills and depict three-dimensional geometry, and the internal architecture of subsurface depositional bodies and their arrangement, hence this book is a great tome on necessary areas of exploration. - Examines the adoption of seismic techniques into basin analysis and broadens the usage of seismic data in geological research - Includes seismic, well log, core and outcrop data, as well as high resolution 3D seismic profiles and slices - Features case studies to further illustrate principles and approaches described in the book, which can be applied to similar basins around the world




Tau-p: a plane wave approach to the analysis of seismic data


Book Description

In exploration seismology, data are acquired at multiple source and receiver posi tions along a profile line. These data are subsequently processed and interpreted. The primary result of this process is a subsurface image of the exploration target. As part of this procedure, additional information is also obtained about the subsurface material properties, e.g., seismic velocities. The methods that are employed in the acquisition and processing of exploration seismic data are internally consistent. That is, principally near vertical incidence seismic waves are generated, recorded and subsequently imaged. The data processing methods commonly used are based upon a small angle of incidence approximation, thus making the imaging problem tractable for existing data processing technology. Although tremendously successful, the limitations of this method are generally recognized. Current and future exploration goals will likely require the use of additional seismic waves, i.e., both compressional and shear precritical and postcritical reflections and refractions. Also, in addition to making better use of seismic travel times, recent efforts to directly incorporate seismic amplitude variations show that the approach may lead to a better understanding of subsurface rock properties. In response to more demanding exploration goals, recent data acquisition techniques have improved significantly by increasing the spatial aperture and incorporating a large number of closely spaced receivers. The need for better subsurface resolution in depth and position has encouraged the use of 240, 512, and even 1024 recorded data channels with receiver separations of 5 to 25 m.