Geomechanics and Geology


Book Description

Geomechanics investigates the origin, magnitude and deformational consequences of stresses in the crust. In recent years awareness of geomechanical processes has been heightened by societal debates on fracking, human-induced seismicity, natural geohazards and safety issues with respect to petroleum exploration drilling, carbon sequestration and radioactive waste disposal. This volume explores the common ground linking geomechanics with inter alia economic and petroleum geology, structural geology, petrophysics, seismology, geotechnics, reservoir engineering and production technology. Geomechanics is a rapidly developing field that brings together a broad range of subsurface professionals seeking to use their expertise to solve current challenges in applied and fundamental geoscience. A rich diversity of case studies herein showcase applications of geomechanics to hydrocarbon exploration and field development, natural and artificial geohazards, reservoir stimulation, contemporary tectonics and subsurface fluid flow. These papers provide a representative snapshot of the exciting state of geomechanics and establish it firmly as a flourishing subdiscipline of geology that merits broadest exposure across the academic and corporate geosciences.




Structural Geology and Geomechanics


Book Description

The 30th International Geological Congress was held in Beijing, China in August 1997. Leading scientists convened to present their findings and views to the international geological research community. Volume 14 of 26 focuses on structural geology and geomechanics. All articles in the proceedings have been refereed and keynote papers have been included in Volume 1. These proceedings aim to present a view of contemporary geology and should be of interest to researchers in the geological sciences.




Developments in Engineering Geology


Book Description

Developments in Engineering Geology is a showcase of the diversity in the science and practice of engineering geology. All branches of geology are applicable to solving engineering problems and this presents a wide frontier of scientific opportunity to engineering geology. In practice, diversity represents a different set of challenges with the distinctive character of the profession derived from the crossover between the disciplines of geology and engineering. This book emphasizes the importance of understanding the geological science behind the engineering behaviour of a soil or rock. It also highlights a continuing expansion in the practice areas of engineering geology and illustrates how this is opening new frontiers to the profession thereby introducing new knowledge and technology across a range of applications. This is initiating an evolution in the way geology is modelled in engineering, geohazard and environmental studies in modern and traditional areas of engineering geology.







Geologic Fracture Mechanics


Book Description

Introduction to geologic fracture mechanics covering geologic structural discontinuities from theoretical and field-based perspectives.




Reservoir Geomechanics


Book Description

This interdisciplinary book encompasses the fields of rock mechanics, structural geology and petroleum engineering to address a wide range of geomechanical problems that arise during the exploitation of oil and gas reservoirs. It considers key practical issues such as prediction of pore pressure, estimation of hydrocarbon column heights and fault seal potential, determination of optimally stable well trajectories, casing set points and mud weights, changes in reservoir performance during depletion, and production-induced faulting and subsidence. The book establishes the basic principles involved before introducing practical measurement and experimental techniques to improve recovery and reduce exploitation costs. It illustrates their successful application through case studies taken from oil and gas fields around the world. This book is a practical reference for geoscientists and engineers in the petroleum and geothermal industries, and for research scientists interested in stress measurements and their application to problems of faulting and fluid flow in the crust.




Fundamentals of Engineering Geology


Book Description

Fundamentals of Engineering Geology discusses geomorphological processes, particularly the linkages between geology, geo-technics, rock mechanics, soil mechanics, and foundation design. The book reviews igneous rocks, metamorphic rocks, sedimentary rocks, and stratigraphy. Stratigraphy is based on three fundamental principles, namely, the "Law of Superposition, the ""Law of Faunal Succession




Rock Mechanics on a Geological Base


Book Description

Until a few years ago, hydropower, road tunneling and mining were the main fields interested in rock mechanics. Now, however, rock mechanics is becoming increasingly important in many more branches - the most significant globally being the disposal of hazardous, especially radiaoctive, waste in deeply located repositories. This has raised a number of new aspects on the mechanical behaviour of large rock masses hosting repositories and of smaller rock elements forming the nearfield of tunnels and boreholes with waste containers. The geological background and above all rock structure form the basis of this book. The structural scheme proposed is referred to explain the scale-dependent behaviour of rock. Thus, the reason for differences in strength and strain properties of different types and volumes of rocks is shown in a very clear fasion, using simple material models and very basic numerical models. The author's academic background in both geology and soil and rock mechanics and his long experience in practical design and construction work has led to an unusually pedagogic way of dealing with the subject. The book is intended for use by consultants in engineering geology and waste disposal and by students of these subjects. However, engineers and geologists with a limited background in stress/strain and fracture theory and computer-based calculation methods will also find the book attractive.




A Geology for Engineers


Book Description

No engineering structure can be built on the ground or within it without the influence of geology being experienced by the engineer. Yet geology is an ancillary subject to students of engineering and it is therefore essential that their training is supported by a concise, reliable and usable text on geology and its relationship to engineering. In this book all the fundamental aspects of geology are described and explained, but within the limits thought suitable for engineers. It describes the structure of the earth and the operation of its internal processes, together with the geological processes that shape the earth and produce its rocks and soils. It also details the commonly occurring types of rock and soil, and many types of geological structure and geological maps. Care has been taken to focus on the relationship between geology and geomechanics, so emphasis has been placed on the geological processes that bear directly upon the composition, structure and mechanics of soil and rocks, and on the movement of groundwater. The descriptions of geological processes and their products are used as the basis for explaining why it is important to investigate the ground, and to show how the investigations may be conducted at ground level and underground. Specific instruction is provided on the relationship between geology and many common activities undertaken when engineering in rock and soil.




Geomechanics Applied to the Petroleum Industry


Book Description

Designing an efficient drilling program is a key step for the development of an oil and/or gas field. Variations in reservoir pressure, saturation and temperature, induced by reservoir production or CO2 injection, involve various coupled physical and chemical processes. Geomechanics, which consider all thermohydromechanical phenomena involved in rock behavior, play an important role in every operation involved in the exploitation of hydrocarbons, from drilling to production, and in CO2 geological storage operations as well. Pressure changes in the reservoir modify the in situ stresses and induce strains, not only within the reservoir itself, but also in the entire sedimentary column. In turn, these stress variations and associated strains modify the fluids flow in the reservoir and change the wellbore stability parameters. This book offers a large overview on applications of Geomechanics to petroleum industry. It presents the fundamentals of rock mechanics, describes the methods used to characterise rocks in the laboratory and the modelling of their mechanical behaviour ; it gives elements of numerical geomechanical modelling at the site scale. It also demonstrates the role of Geomechanics in the optimisation of drilling and production : it encompasses drillability, wellbore stability, sand production and hydraulic fracturing ; it provides the basic attainments to deal with the environmental aspects of heave or subsidence of the surface layers, CO2 sequestration and well abandonment ; and it shows how seismic monitoring and geomechanical modelling of reservoirs can help to optimise production or check cap rock integrity. This book will be of interest to all engineers involved in oil field development and petroleum engineering students, whether drillers or producers. It aims also at providing a large range of potential users with a simple approach of a broad field of knowledge.