Geometric Analysis Around Scalar Curvatures


Book Description

This volume contains three expanded lecture notes from the program Scalar Curvature in Manifold Topology and Conformal Geometry that was held at the Institute for Mathematical Sciences from 1 November to 31 December 2014. The first chapter surveys the recent developments on the fourth-order equations with negative exponent from geometric points of view such as positive mass theorem and uniqueness results. The next chapter deals with the recent important progress on several conjectures such as the existence of non-flat smooth hyper-surfaces and Serrin's over-determined problem. And the final chapter induces a new technique to handle the equation with critical index and the sign change coefficient as well as the negative index term. These topics will be of interest to those studying conformal geometry and geometric partial differential equations.




Comparison Geometry


Book Description

This is an up to date work on a branch of Riemannian geometry called Comparison Geometry.




Global Riemannian Geometry: Curvature and Topology


Book Description

This book contains a clear exposition of two contemporary topics in modern differential geometry: distance geometric analysis on manifolds, in particular, comparison theory for distance functions in spaces which have well defined bounds on their curvature the application of the Lichnerowicz formula for Dirac operators to the study of Gromov's invariants to measure the K-theoretic size of a Riemannian manifold. It is intended for both graduate students and researchers.




The Geometry, Topology And Physics Of Moduli Spaces Of Higgs Bundles


Book Description

In the 25 years since their introduction, Higgs bundles have seen a surprising number of interactions within different areas of mathematics and physics. There is a recent surge of interest following Ngô Bau Châu's proof of the Fundamental Lemma and the work of Kapustin and Witten on the Geometric Langlands program. The program on The Geometry, Topology and Physics of Moduli Spaces of Higgs Bundles, was held at the Institute for Mathematical Sciences at the National University of Singapore during 2014. It hosted a number of lectures on recent topics of importance related to Higgs bundles, and it is the purpose of this volume to collect these lectures in a form accessible to graduate students and young researchers interested in learning more about this field.




Curvature of Space and Time, with an Introduction to Geometric Analysis


Book Description

This book introduces advanced undergraduates to Riemannian geometry and mathematical general relativity. The overall strategy of the book is to explain the concept of curvature via the Jacobi equation which, through discussion of tidal forces, further helps motivate the Einstein field equations. After addressing concepts in geometry such as metrics, covariant differentiation, tensor calculus and curvature, the book explains the mathematical framework for both special and general relativity. Relativistic concepts discussed include (initial value formulation of) the Einstein equations, stress-energy tensor, Schwarzschild space-time, ADM mass and geodesic incompleteness. The concluding chapters of the book introduce the reader to geometric analysis: original results of the author and her undergraduate student collaborators illustrate how methods of analysis and differential equations are used in addressing questions from geometry and relativity. The book is mostly self-contained and the reader is only expected to have a solid foundation in multivariable and vector calculus and linear algebra. The material in this book was first developed for the 2013 summer program in geometric analysis at the Park City Math Institute, and was recently modified and expanded to reflect the author's experience of teaching mathematical general relativity to advanced undergraduates at Lewis & Clark College.




White Noise Analysis And Quantum Information


Book Description

This volume is to pique the interest of many researchers in the fields of infinite dimensional analysis and quantum probability. These fields have undergone increasingly significant developments and have found many new applications, in particular, to classical probability and to different branches of physics. These fields are rather wide and are of a strongly interdisciplinary nature. For such a purpose, we strove to bridge among these interdisciplinary fields in our Workshop on IDAQP and their Applications that was held at the Institute for Mathematical Sciences, National University of Singapore from 3-7 March 2014. Readers will find that this volume contains all the exciting contributions by well-known researchers in search of new directions in these fields.




Mathemusical Conversations: Mathematics And Computation In Music Performance And Composition


Book Description

Mathemusical Conversations celebrates the understanding of music through mathematics, and the appreciation of mathematics through music. This volume is a compilation of the invited talks given at the Mathemusical Conversations workshop that took place in Singapore from 13-15 February 2015, organized by Elaine Chew in partnership with Gérard Assayag for the scientific program and with Bernard Lanskey for the artistic program. The contributors are world experts and leading scholars, writing on the intersection of music and mathematics. They also focus on performance and composition, two topics which are foundational both to the understanding of human creativity and to the creation of tomorrow's music technologies. This book is essential reading for researchers in both music and mathematics. It will also appeal more broadly to scholars, students, musicians, and anyone interested in new perspectives on the intimate relationship between these two universal human activities.




Modeling And Simulation For Collective Dynamics


Book Description

The thematic program Quantum and Kinetic Problems: Modeling, Analysis, Numerics and Applications was held at the Institute for Mathematical Sciences at the National University of Singapore, from September 2019 to March 2020. Leading experts presented tutorials and special lectures geared towards the participating graduate students and junior researchers.Readers will find in this significant volume four expanded lecture notes with self-contained tutorials on modeling and simulation for collective dynamics including individual and population approaches for population dynamics in mathematical biology, collective behaviors for Lohe type aggregation models, mean-field particle swarm optimization, and consensus-based optimization and ensemble Kalman inversion for global optimization problems with constraints.This volume serves to inspire graduate students and researchers who will embark into original research work in kinetic models for collective dynamics and their applications.




Density Functionals For Many-particle Systems: Mathematical Theory And Physical Applications Of Effective Equations


Book Description

Density Functional Theory (DFT) first established it's theoretical footing in the 1960s from the framework of Hohenberg-Kohn theorems. DFT has since seen much development in evaluation techniques as well as application in solving problems in Physics, Mathematics and Chemistry.This review volume, part of the IMS Lecture Notes Series, is a collection of contributions from the September 2019 Workshop on the topic, held in the Institute for Mathematical Sciences, National University of Singapore.With contributions from prominent Mathematicians, Physicists, and Chemists, the volume is a blend of comprehensive review articles on the Mathematical and the Physicochemical aspects of DFT and shorter contributions on particular themes, including numerical implementations.The book will be a useful reference for advanced undergraduate and postgraduate students as well as researchers.




Models And Methods For Quantum Condensation And Fluids


Book Description

The Institute for Mathematical Sciences at the National University of Singapore hosted a thematic program on Quantum and Kinetic Problems: Modeling, Analysis, Numerics and Applications from September 2019 to March 2020. As an important part of the program, tutorials and special lectures were given by leading experts in the fields for participating graduate students and junior researchers. This invaluable volume collects six expanded lecture notes with self-contained tutorials. The coverage includes mathematical models and numerical methods for multidimensional solitons in linear and nonlinear potentials; Bose-Einstein condensation (BEC) with dipole-dipole interaction, higher order interaction and spin-orbit coupling; classical and quantum turbulence; and molecular dynamics process based on the first-principle in quantum chemistry.This volume serves to inspire graduate students and researchers who will embark into original research work in these fields.