Geometric Feature-Based Fiber Optic Surface Plasmon Resonance Sensors


Book Description

This book focuses on the surface plasmon resonance (SPR) technique covering fibre optic sensor research. It highlights recent advancements in geometric feature-based fibre optic SPR sensors for chemical/biochemical/biosensor applications. The contents also discuss the principle of the SPR sensing technique as well as various designs of fibre optic SPR probes for improving sensor sensitivity. It also includes numerous examples of SPR-based fibre optic sensors with various geometric (such as U-type, taper type, D-type, and interferometric-based) sensors. This volume will be a useful reference to those in academia and industry especially researchers with useful information focusing on fibre optic SPR sensors.




Lab-on-Fiber Technology


Book Description

This book focuses on a research field that is rapidly emerging as one of the most promising ones for the global optics and photonics community: the “lab-on-fiber” technology. Inspired by the well-established "lab on-a-chip" concept, this new technology essentially envisages novel and highly functionalized devices completely integrated into a single optical fiber for both communication and sensing applications. Based on the R&D experience of some of the world's leading authorities in the fields of optics, photonics, nanotechnology, and material science, this book provides a broad and accurate description of the main developments and achievements in the lab-on-fiber technology roadmap, also highlighting the new perspectives and challenges to be faced. This book is essential for scientists interested in the cutting-edge fiber optic technology, but also for graduate students.




Optical Biosensors


Book Description

Optical Biosensors, Second Edition describes the principles of successful systems, examples of applications, and evaluates the advantages and deficiencies of each. It also addresses future developments on two levels: possible improvements in existing systems and emerging technologies that could provide new capabilities in the future. The book is formatted for ease of use and is therefore suitable for scientists and engineers, students and researcher at all levels in the field. - Comprehensive analysis and review of the underlying principles by optical biosensors - Updates and informs on all the latest developments and hot topic areas - Evaluates current methods showing the advantages and disadvantages of various systems involved




Fiber Optic Sensors


Book Description

The book is an introduction to the rapidly emerging field of fiber optic sensors that is having significant impact upon areas such as guidance and control, structural monitoring, process control, biotechnology, geographical information systems and medicine.




Surface Plasmon Resonance Sensors


Book Description

This book addresses the important physical phenomenon of Surface Plasmon Resonance or Surface Plasmon Polaritons in thin metal films, a phenomenon which is exploited in the design of a large variety of physico-chemical optical sensors. In this treatment, crucial materials aspects for design and optimization of SPR sensors are investigated and outlined in detail. The text covers the selection of nanometer thin metal films, ranging from free-electron to the platinum type conductors, along with their combination with a large variety of dielectric substrate materials, and associated individual layer and opto-geometric arrangements. Furthermore, as-yet hardly explored SPR features of selected metal–metal and metal–dielectric super lattices are included in this report. An in-depth multilayer Fresnel evaluation provides the mathematical tool for this optical analysis, which otherwise relies solely on experimentally determined electro-optical materials parameters.




Optical Sensors


Book Description

This interesting book covers latest aspects of a highly sophisticated technology; results treated in critical detail; demonstrates applicability of this technology to practical problems in process control, biochip methods, clinical analysis, environmental sciences




Optical Fibre Sensors


Book Description

The most complete, one-stop reference for fiber optic sensor theory and application Optical Fiber Sensors: Fundamentals for Development of Optimized Devices constitutes the most complete, comprehensive, and up-to-date reference on the development of optical fiber sensors. Edited by two respected experts in the field and authored by experienced engineers and scientists, the book acts as a guide and a reference for an audience ranging from graduate students to researchers and engineers in the field of fiber optic sensors. The book discusses the fundamentals and foundations of fiber optic sensor technology and provides real-world examples to illuminate and illustrate the concepts found within. In addition to the basic concepts necessary to understand this technology, Optical Fiber Sensors includes chapters on: Distributed sensing with Rayleigh, Raman and Brillouin scattering methods Biomechanical sensing Gas and volatile organic compound sensors Application of nanotechnology to optical fiber sensors Health care and clinical diagnosis And others Graduate students as well as professionals who work with optical fiber sensors will find this volume to be an indispensable resource and reference.




Optical Fiber-based Plasmonic Biosensors


Book Description

This book discusses the history, physics, fundamental principles, sensing technologies, and characterization of plasmonic phenomenon-based fiber-optic biosensors, using optic-plasmonic sensors as a case study. It describes the plasmonic phenomenon and its application in optical fiber-based sensing, presented based on properties and usage of different nanomaterials spread across nine chapters. Content covers advances in nanomaterials, structural designing, and their scope in biomedical applications. Future developments of biosensing devices and related articulate methods are also described. Features: Gives a comprehensive view on the nanomaterials used in plasmonic optical fiber biosensors Includes synthesis, characterization, and usage for detection of different analytes Discusses trends in the design of wavelength-based optical fiber sensors Reviews micro- and nanostructured biosensing devices Explores application of plasmonic sensors in the biosensing field This book is aimed at researchers and graduate students in Optical Communications, Biomedical Engineering, Optics, Sensors, Instrumentation, and Measurement.




Handbook of Optical Sensors


Book Description

Handbook of Optical Sensors provides a comprehensive and integrated view of optical sensors, addressing the fundamentals, structures, technologies, applications, and future perspectives. Featuring chapters authored by recognized experts and major contributors to the field, this essential reference: Explains the basic aspects of optical sensors and the principles of optical metrology, presenting a brief historical review Explores the role of optical waveguides in sensing and discusses sensor technologies based on intensity and phase modulation, fluorescence, and plasmonic waves Describes wavefront sensing, multiphoton microscopy, and imaging based on optical coherence tomography Covers optical fiber sensing, from light guiding in standard and microstructured optical fibers to sensor multiplexing, distributed sensing, and fiber Bragg grating Offers a broad perspective of the field and identifies trends that could shape the future, such as metamaterials and entangled quantum states of light Handbook of Optical Sensors is an ideal resource for practitioners and those seeking optical solutions for their specific needs, as well as for students and investigators who are the intellectual driving force of optical sensing.




Surface Plasmon Resonance Based Sensors


Book Description

This is a comprehensive treatment of the field of SPR sensors, in three parts. Part I introduces principles of surface plasmon resonance bio-sensors, electromagnetic theory of surface plasmons, theory of SPR sensors and molecular interactions at sensor surfaces. Part II examines the development of SPR sensor instrumentation and functionalization methods. Part III reviews applications of SPR biosensors in the study of molecules, and in environmental monitoring, food safety and medical diagnostics.