Geometric Function Theory and Non-linear Analysis


Book Description

Iwaniec (math, Syracuse U.) and Martin (math, U. of Auckland) explain recent developments in the geometry of mappings, related to functions or deformations between subsets of the Euclidean n-space Rn and more generally between manifolds or other geometric objects. Material on mappings intersects with aspects of differential geometry, topology, partial differential equations, harmonic analysis, and the calculus of variations. Chapters cover topics such as conformal mappings, stability of the Mobius group, Sobolev theory and function spaces, the Liouville theorem, even dimensions, Picard and Montel theorems in space, uniformly quasiregular mappings, and quasiconformal groups. c. Book News Inc.




Convex Analysis and Nonlinear Geometric Elliptic Equations


Book Description

Investigations in modem nonlinear analysis rely on ideas, methods and prob lems from various fields of mathematics, mechanics, physics and other applied sciences. In the second half of the twentieth century many prominent, ex emplary problems in nonlinear analysis were subject to intensive study and examination. The united ideas and methods of differential geometry, topology, differential equations and functional analysis as well as other areas of research in mathematics were successfully applied towards the complete solution of com plex problems in nonlinear analysis. It is not possible to encompass in the scope of one book all concepts, ideas, methods and results related to nonlinear analysis. Therefore, we shall restrict ourselves in this monograph to nonlinear elliptic boundary value problems as well as global geometric problems. In order that we may examine these prob lems, we are provided with a fundamental vehicle: The theory of convex bodies and hypersurfaces. In this book we systematically present a series of centrally significant results obtained in the second half of the twentieth century up to the present time. Particular attention is given to profound interconnections between various divisions in nonlinear analysis. The theory of convex functions and bodies plays a crucial role because the ellipticity of differential equations is closely connected with the local and global convexity properties of their solutions. Therefore it is necessary to have a sufficiently large amount of material devoted to the theory of convex bodies and functions and their connections with partial differential equations.




Nonlinear Analysis, Geometry and Applications


Book Description

This book gathers nineteen papers presented at the first NLAGA-BIRS Symposium, which was held at the Cheikh Anta Diop University in Dakar, Senegal, on June 24–28, 2019. The four-day symposium brought together African experts on nonlinear analysis and geometry and their applications, as well as their international partners, to present and discuss mathematical results in various areas. The main goal of the NLAGA project is to advance and consolidate the development of these mathematical fields in West and Central Africa with a focus on solving real-world problems such as coastal erosion, pollution, and urban network and population dynamics problems. The book addresses a range of topics related to partial differential equations, geometrical analysis of optimal shapes, geometric structures, optimization and optimal transportation, control theory, and mathematical modeling.




Geometric Nonlinear Functional Analysis


Book Description

A systematic study of geometric nonlinear functional analysis. The main theme is the study of uniformly continuous and Lipschitz functions between Banach spaces. This study leads to the classification of Banach spaces and of their important subsets in the uniform and Lipschitz categories.




Geometric Analysis and Nonlinear Partial Differential Equations


Book Description

This book is not a textbook, but rather a coherent collection of papers from the field of partial differential equations. Nevertheless we believe that it may very well serve as a good introduction into some topics of this classical field of analysis which, despite of its long history, is highly modem and well prospering. Richard Courant wrote in 1950: "It has always been a temptationfor mathematicians to present the crystallized product of their thought as a deductive general theory and to relegate the individual mathematical phenomenon into the role of an example. The reader who submits to the dogmatic form will be easily indoctrinated. Enlightenment, however, must come from an understanding of motives; live mathematical development springs from specific natural problems which can be easily understood, but whose solutions are difficult and demand new methods or more general significance. " We think that many, if not all, papers of this book are written in this spirit and will give the reader access to an important branch of analysis by exhibiting interest ing problems worth to be studied. Most of the collected articles have an extensive introductory part describing the history of the presented problems as well as the state of the art and offer a well chosen guide to the literature. This way the papers became lengthier than customary these days, but the level of presentation is such that an advanced graduate student should find the various articles both readable and stimulating.




An Introduction to Nonlinear Analysis: Theory


Book Description

An Introduction to Nonlinear Analysis: Theory is an overview of some basic, important aspects of Nonlinear Analysis, with an emphasis on those not included in the classical treatment of the field. Today Nonlinear Analysis is a very prolific part of modern mathematical analysis, with fascinating theory and many different applications ranging from mathematical physics and engineering to social sciences and economics. Topics covered in this book include the necessary background material from topology, measure theory and functional analysis (Banach space theory). The text also deals with multivalued analysis and basic features of nonsmooth analysis, providing a solid background for the more applications-oriented material of the book An Introduction to Nonlinear Analysis: Applications by the same authors. The book is self-contained and accessible to the newcomer, complete with numerous examples, exercises and solutions. It is a valuable tool, not only for specialists in the field interested in technical details, but also for scientists entering Nonlinear Analysis in search of promising directions for research.




An Introduction to Nonlinear Analysis: Applications


Book Description

This book offers an exposition of the main applications of Nonlinear Analysis, beginning with a chapter on Nonlinear Operators and Fixed Points, a connecting point and bridge from Nonlinear Analysis theory to its applications. The topics covered include applications to ordinary and partial differential equations, optimization, optimal control, calculus of variations and mathematical economics. The presentation is supplemented with the inclusion of many exercises and their solutions.




Analysis of Geometrically Nonlinear Structures


Book Description

The availability of computers has, in real terms, moved forward the practice of structural engineering. Where it was once enough to have any analysis given a complex configuration, the profession today is much more demanding. How engineers should be more demanding is the subject of this book. In terms of the theory of structures, the importance of geometric nonlinearities is explained by the theorem which states that "In the presence of prestress, geometric nonlinearities are of the same order of magnitude as linear elastic effects in structures. " This theorem implies that in most cases (in all cases of incremental analysis) geometric nonlinearities should be considered. And it is well known that problems of buckling, cable nets, fabric structures, ... REQUIRE the inclusion of geometric nonlinearities. What is offered in the book which follows is a unified approach (for both discrete and continuous systems) to geometric nonlinearities which incidentally does not require a discussion of large strain. What makes this all work is perturbation theory. Let the equations of equilibrium for a system be written as where P represents the applied loads, F represents the member forces or stresses, and N represents the operator which describes system equilibrium.




Semigroups in Geometrical Function Theory


Book Description

Historically, complex analysis and geometrical function theory have been inten sively developed from the beginning of the twentieth century. They provide the foundations for broad areas of mathematics. In the last fifty years the theory of holomorphic mappings on complex spaces has been studied by many mathemati cians with many applications to nonlinear analysis, functional analysis, differential equations, classical and quantum mechanics. The laws of dynamics are usually presented as equations of motion which are written in the abstract form of a dy namical system: dx / dt + f ( x) = 0, where x is a variable describing the state of the system under study, and f is a vector function of x. The study of such systems when f is a monotone or an accretive (generally nonlinear) operator on the under lying space has been recently the subject of much research by analysts working on quite a variety of interesting topics, including boundary value problems, integral equations and evolution problems (see, for example, [19, 13] and [29]). In a parallel development (and even earlier) the generation theory of one parameter semigroups of holomorphic mappings in en has been the topic of interest in the theory of Markov stochastic processes and, in particular, in the theory of branching processes (see, for example, [63, 127, 48] and [69]).




Geometrical Methods of Nonlinear Analysis


Book Description

Geometrical (in particular, topological) methods in nonlinear analysis were originally invented by Banach, Birkhoff, Kellogg, Schauder, Leray, and others in existence proofs. Since about the fifties, these methods turned out to be essentially the sole approach to a variety of new problems: the investigation of iteration processes and other procedures in numerical analysis, in bifur cation problems and branching of solutions, estimates on the number of solutions and criteria for the existence of nonzero solutions, the analysis of the structure of the solution set, etc. These methods have been widely applied to the theory of forced vibrations and auto-oscillations, to various problems in the theory of elasticity and fluid. mechanics, to control theory, theoretical physics, and various parts of mathematics. At present, nonlinear analysis along with its geometrical, topological, analytical, variational, and other methods is developing tremendously thanks to research work in many countries. Totally new ideas have been advanced, difficult problems have been solved, and new applications have been indicated. To enumerate the publications of the last few years one would need dozens of pages. On the other hand, many problems of non linear analysis are still far from a solution (problems arising from the internal development of mathematics and, in particular, problems arising in the process of interpreting new problems in the natural sciences). We hope that the English edition of our book will contribute to the further propagation of the ideas of nonlinear analysis.