Geometric Symmetry in Patterns and Tilings


Book Description

This book covers a wide range of mathematical concepts as they are applied to regularly repeating surface decoration for textiles and other decorated materials such as wallpapers and wrappings. Starting with basic principles of symmetry it moves on to cover more complex issues of graph theory, group theory and topology. All these concepts are extensively illustrated with over 1000 original illustrations. A complex area, previously best understood by mathematicians and crystallographers, is made accessible here to artists and designers.




Symmetry, Shape and Space


Book Description

This book will appeal to at least three groups of readers: prospective high school teachers, liberal arts students, and parents whose children are studying high school or college math. It is modern in its selection of topics, and in the learning models used by the authors. The book covers some exciting but non-traditional topics from the subject area of geometry. It is also intended for undergraduates and tries to engage their interest in mathematics. Many innovative pedagogical modes are used throughout.




Geometry and Symmetry


Book Description

This new book for mathematics and mathematics education majors helps students gain an appreciation of geometry and its importance in the history and development of mathematics. The material is presented in three parts. The first is devoted to a rigorous introduction of Euclidean geometry, the second covers various noneuclidean geometries, and the last part delves into symmetry and polyhedra. Historical contexts accompany each topic. Exercises and activities are interwoven with the text to enable the students to explore geometry. Some of the activities take advantage of geometric software so students - in particular, future teachers - gain a better understanding of its capabilities. Others explore the construction of simple models or use manipulatives allowing students to experience the hands-on, creative side of mathematics. While this text contains a rigorous mathematical presentation, key design features and activities allow it to be used successfully in mathematics for teachers courses as well.




Geometric Symmetry


Book Description

Symmetry is of interest in two ways, artistic and mathematical. It underlies much scientific thought, playing an important role in chemistry and atomic physics, and a dominant one in crystallography. It is important in architectural and engineering design and particularly in the decorative arts. This book provides a comprehensive account of symmetry in a form acceptable to readers without much detailed mathematical knowledge or experience who nevertheless want to understand the basic principles of the subject. It will be useful in school and other libraries and as preliminary reading for students of crystallography. The treatment is geometrical, which should appeal to art students and to readers whose mathematical interests are that way inclined.




Geometric Mechanics and Symmetry


Book Description

A graduate level text based partly on lectures in geometry, mechanics, and symmetry given at Imperial College London, this book links traditional classical mechanics texts and advanced modern mathematical treatments of the subject.




Differential Geometry, Lie Groups, and Symmetric Spaces


Book Description

A great book ... a necessary item in any mathematical library. --S. S. Chern, University of California A brilliant book: rigorous, tightly organized, and covering a vast amount of good mathematics. --Barrett O'Neill, University of California This is obviously a very valuable and well thought-out book on an important subject. --Andre Weil, Institute for Advanced Study The study of homogeneous spaces provides excellent insights into both differential geometry and Lie groups. In geometry, for instance, general theorems and properties will also hold for homogeneous spaces, and will usually be easier to understand and to prove in this setting. For Lie groups, a significant amount of analysis either begins with or reduces to analysis on homogeneous spaces, frequently on symmetric spaces. For many years and for many mathematicians, Sigurdur Helgason's classic Differential Geometry, Lie Groups, and Symmetric Spaces has been--and continues to be--the standard source for this material. Helgason begins with a concise, self-contained introduction to differential geometry. Next is a careful treatment of the foundations of the theory of Lie groups, presented in a manner that since 1962 has served as a model to a number of subsequent authors. This sets the stage for the introduction and study of symmetric spaces, which form the central part of the book. The text concludes with the classification of symmetric spaces by means of the Killing-Cartan classification of simple Lie algebras over $\mathbb{C}$ and Cartan's classification of simple Lie algebras over $\mathbb{R}$, following a method of Victor Kac. The excellent exposition is supplemented by extensive collections of useful exercises at the end of each chapter. All of the problems have either solutions or substantial hints, found at the back of the book. For this edition, the author has made corrections and added helpful notes and useful references. Sigurdur Helgason was awarded the Steele Prize for Differential Geometry, Lie Groups, and Symmetric Spaces and Groups and Geometric Analysis.




Why Beauty Is Truth


Book Description

Physics.




Transformation Geometry


Book Description

Transformation Geometry: An Introduction to Symmetry offers a modern approach to Euclidean Geometry. This study of the automorphism groups of the plane and space gives the classical concrete examples that serve as a meaningful preparation for the standard undergraduate course in abstract algebra. The detailed development of the isometries of the plane is based on only the most elementary geometry and is appropriate for graduate courses for secondary teachers.




Representation Surfaces for Physical Properties of Materials


Book Description

This textbook presents all the mathematical and physical concepts needed to visualize and understand representation surfaces, providing readers with a reliable and intuitive understanding of the behavior and properties of anisotropic materials, and a sound grasp of the directionality of material properties. They will learn how to extract quantitative information from representation surfaces, which encode tremendous amounts of information in a very concise way, making them especially useful in understanding higher order tensorial material properties (piezoelectric moduli, elastic compliance and rigidity, etc.) and in the design of applications based on these materials. Readers will also learn from scratch concepts on crystallography, symmetry and Cartesian tensors, which are essential for understanding anisotropic materials, their design and application. The book describes how to apply representation surfaces to a diverse range of material properties, making it a valuable resource for material scientists, mechanical engineers, and solid state physicists, as well as advanced undergraduates in Materials Science, Solid State Physics, Electronics, Optics, Mechanical Engineering, Composites and Polymer Science. Moreover, the book includes a wealth of worked-out examples, problems and exercises to help further understanding.




Symplectic Geometry and Mirror Symmetry


Book Description

In 1993, M. Kontsevich proposed a conceptual framework for explaining the phenomenon of mirror symmetry. Mirror symmetry had been discovered by physicists in string theory as a duality between families of three-dimensional Calabi–Yau manifolds. Kontsevich's proposal uses Fukaya's construction of the A∞-category of Lagrangian submanifolds on the symplectic side and the derived category of coherent sheaves on the complex side. The theory of mirror symmetry was further enhanced by physicists in the language of D-branes and also by Strominger–Yau–Zaslow in the geometric set-up of (special) Lagrangian torus fibrations. It rapidly expanded its scope across from geometry, topology, algebra to physics. In this volume, leading experts in the field explore recent developments in relation to homological mirror symmetry, Floer theory, D-branes and Gromov–Witten invariants. Kontsevich-Soibelman describe their solution to the mirror conjecture on the abelian variety based on the deformation theory of A∞-categories, and Ohta describes recent work on the Lagrangian intersection Floer theory by Fukaya–Oh–Ohta–Ono which takes an important step towards a rigorous construction of the A∞-category. There follow a number of contributions on the homological mirror symmetry, D-branes and the Gromov–Witten invariants, e.g. Getzler shows how the Toda conjecture follows from recent work of Givental, Okounkov and Pandharipande. This volume provides a timely presentation of the important developments of recent years in this rapidly growing field.