Normal Partitions and Hierarchical Fillings of N-Dimensional Spaces


Book Description

In the study of the structure of substances in recent decades, phenomena in the higher dimension was discovered that was previously unknown. These include spontaneous zooming (scaling processes), discovery of crystals with the absence of translational symmetry in three-dimensional space, detection of the fractal nature of matter, hierarchical filling of space with polytopes of higher dimension, and the highest dimension of most molecules of chemical compounds. This forces research to expand the formulation of the question of constructing n-dimensional spaces, posed by David Hilbert in 1900, and to abandon the methods of considering the construction of spaces by geometric figures that do not take into account the accumulated discoveries in the physics of the structure of substances. There is a need for research that accounts for the new paradigm of the discrete world and provides a solution to Hilbert's 18th problem of constructing spaces of higher dimension using congruent figures. Normal Partitions and Hierarchical Fillings of N-Dimensional Spaces aims to consider the construction of spaces of various dimensions from two to any finite dimension n, taking into account the indicated conditions, including zooming in on shapes, properties of geometric figures of higher dimensions, which have no analogue in three-dimensional space. This book considers the conditions of existence of polytopes of higher dimension, clusters of chemical compounds as polytopes of the highest dimension, higher dimensions in the theory of heredity, the geometric structure of the product of polytopes, the products of polytopes on clusters and molecules, parallelohedron and stereohedron of Delaunay, parallelohedron of higher dimension and partition of n-dimensional spaces, hierarchical filling of n-dimensional spaces, joint normal partitions, and hierarchical fillings of n-dimensional spaces. In addition, it pays considerable attention to biological problems. This book is a valuable reference tool for practitioners, stakeholders, researchers, academicians, and students who are interested in learning more about the latest research on normal partitions and hierarchical fillings of n-dimensional spaces.




Regular Polytopes


Book Description

Foremost book available on polytopes, incorporating ancient Greek and most modern work. Discusses polygons, polyhedrons, and multi-dimensional polytopes. Definitions of symbols. Includes 8 tables plus many diagrams and examples. 1963 edition.




Polytopes and Symmetry


Book Description

This book describes a fresh approach to the classification of of convex plane polygons and of convex polyhedra according to their symmetry properties, based on ideas of topology and transformation group theory. Although there is considerable agreement with traditional treatments, a number of new concepts emerge that present classical ideas in a quite new way.




American Journal of Mathematics


Book Description

The American Journal of Mathematics publishes research papers and articles of broad appeal covering the major areas of contemporary mathematics.




The Classes of Higher Dimensional Polytopes in Chemical, Physical, and Biological Systems


Book Description

The study of the geometry of structures that arise in a variety of specific natural systems, such as chemical, physical, biological, and geological, revealed the existence of a wide range of types of polytopes of the highest dimension that were unknown in classical geometry. At the same time, new properties of polytopes were discovered as well as the geometric patterns to which they obey. There is a need to classify these types of polytopes of the highest dimension by listing their properties and formulating the laws to which they obey. The Classes of Higher Dimensional Polytopes in Chemical, Physical, and Biological Systems explains the meaning of higher dimensions and systematically generalizes the results of geometric research in various fields of knowledge. This book is useful both for the fundamental development of geometry and for the development of branches of science related to human activities. It builds upon previous books published by the author on this topic. Covering areas such as heredity, geometry, and dimensions, this reference work is ideal for researchers, scholars, academicians, practitioners, industry professionals, instructors, and students.




Abstract Regular Polytopes


Book Description

Abstract regular polytopes stand at the end of more than two millennia of geometrical research, which began with regular polygons and polyhedra. They are highly symmetric combinatorial structures with distinctive geometric, algebraic or topological properties; in many ways more fascinating than traditional regular polytopes and tessellations. The rapid development of the subject in the past 20 years has resulted in a rich new theory, featuring an attractive interplay of mathematical areas, including geometry, combinatorics, group theory and topology. Abstract regular polytopes and their groups provide an appealing new approach to understanding geometric and combinatorial symmetry. This is the first comprehensive up-to-date account of the subject and its ramifications, and meets a critical need for such a text, because no book has been published in this area of classical and modern discrete geometry since Coxeter's Regular Polytopes (1948) and Regular Complex Polytopes (1974). The book should be of interest to researchers and graduate students in discrete geometry, combinatorics and group theory.




Polytopes


Book Description

The aim of this volume is to reinforce the interaction between the three main branches (abstract, convex and computational) of the theory of polytopes. The articles include contributions from many of the leading experts in the field, and their topics of concern are expositions of recent results and in-depth analyses of the development (past and future) of the subject. The subject matter of the book ranges from algorithms for assignment and transportation problems to the introduction of a geometric theory of polyhedra which need not be convex. With polytopes as the main topic of interest, there are articles on realizations, classifications, Eulerian posets, polyhedral subdivisions, generalized stress, the Brunn--Minkowski theory, asymptotic approximations and the computation of volumes and mixed volumes. For researchers in applied and computational convexity, convex geometry and discrete geometry at the graduate and postgraduate levels.