Geometrical Theory of Diffraction


Book Description

This book details the ideas underlying geometrical theory of diffraction (GTD) along with its relationships with other EM theories.




Introduction to the Uniform Geometrical Theory of Diffraction


Book Description

A text for senior undergraduate or beginning graduate students, as well as practicing engineers, that bridges the gap between specialist papers and the use of GTD in practical problems. It introduces the principal results and concepts, their various parameters, and applications to a wide variety of




Classical and Modern Diffraction Theory


Book Description

Providing geophysicists with an in-depth understanding of the theoretical and applied background for the seismic diffraction method, “Classical and Modern Diffraction Theory” covers the history and foundations of the classical theory and the key elements of the modern diffraction theory. Chapters include an overview and a historical review of classical theory, a summary of the experimental results illustrating this theory, and key principles of the modern theory of diffraction; the early cornerstones of classical diffraction theory, starting from its inception in the 17th century and an extensive introduction to reprinted works of Grimaldi, Huygens, and Young; details of the classical theory of diffractions as developed in the 19th century and reprinted works of Fresnel, Green, Helmholtz, Kirchhoff, and Rayleigh; and the cornerstones of the modern theory including Keller’s geometrical theory of diffraction, boundary-layer theory, and super-resolution. Appendices on the Cornu spiral and Babinet’s principle are also included.




Fundamentals of the Physical Theory of Diffraction


Book Description

This book is the first complete and comprehensive description of the modern Physical Theory of Diffraction (PTD) based on the concept of elementary edge waves (EEWs). The theory is demonstrated with the example of the diffraction of acoustic and electromagnetic waves at perfectly reflecting objects. The derived analytic expressions clearly explain the physical structure of the scattered field and describe in detail all of the reflected and diffracted rays and beams, as well as the fields in the vicinity of caustics and foci. Shadow radiation, a new fundamental component of the field, is introduced and proven to contain half of the total scattered power.




Principles of Optics


Book Description

Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, Sixth Edition covers optical phenomenon that can be treated with Maxwell's phenomenological theory. The book is comprised of 14 chapters that discuss various topics about optics, such as geometrical theories, image forming instruments, and optics of metals and crystals. The text covers the elements of the theories of interference, interferometers, and diffraction. The book tackles several behaviors of light, including its diffraction when exposed to ultrasonic waves. The selection will be most useful to researchers whose work involves understanding the behavior of light.




Geometrical Theory of Diffraction for Electromagnetic Waves


Book Description

The purpose of the book, apart from expounding the Geometrical Theory of Diffraction (GTD) method, is to present useful formulations that can be readily applied to solve practical engineering problems.




Aperture Antennas and Diffraction Theory


Book Description

Two alternative methods of aperture antenna analysis are described in this book.




Theory of Seismic Diffractions


Book Description

Presents a complete mathematical description of diffractions caused by seismic velocity discontinuities. Diffraction theory provides important physical insights into seismology and is a necessary part of describing the nature of a seismogram. The author describes elastic wave theory and relates it to the high-frequency approximations of ray theory.




Electromagnetic Diffraction Modeling and Simulation with MATLAB


Book Description

This exciting new resource presents a comprehensive introduction to the fundamentals of diffraction of two-dimensional canonical structures, including wedge, strip, and triangular cylinder with different boundary conditions. Maxwell equations are discussed, along with wave equation and scattered, diffracted and fringe fields. Geometric optics, as well as the geometric theory of diffraction are explained. With MATLAB scripts included for several well-known electromagnetic diffraction problems, this book discusses diffraction fundamentals of two-dimensional structures with different boundary conditions and analytical numerical methods that are used to show diffraction. The book introduces fundamental concepts of electromagnetic problems, identities, and definitions for diffraction modeling. Basic coordinate systems, boundary conditions, wave equation, and Green’s function problem are given. The scattered fields, diffracted fields, and fringe fields, radar cross section for diffraction modeling are presented. Behaviors of electromagnetic waves around the two-dimensional canonical wedge and canonical strip are also explored. Diffraction of trilateral cylinders and wedges with rounded edges is investigated as well as double tip diffraction using Finite Difference Time Domain and Method of Moments. A MATLAB based virtual tool, developed with graphical user interface (GUI), for the visualization of both fringe currents and fringe waves is included, using numerical FDTD and MoM algorithm and High-Frequency Asymptotics approaches.




Diffraction Theory


Book Description

This title contains the detailed descriptions of the Sommerfeld-Malyuzhinets technique and the related mathematical aspects.