Géométrie et théorie des groupes


Book Description

The book is an introduction of Gromov's theory of hyperbolic spaces and hyperbolic groups. It contains complete proofs of some basic theorems which are due to Gromov, and emphasizes some important developments on isoperimetric inequalities, automatic groups, and the metric structure on the boundary of a hyperbolic space.




Differential Geometry, Lie Groups, and Symmetric Spaces


Book Description

The present book is intended as a textbook and reference work on three topics in the title. Together with a volume in progress on "Groups and Geometric Analysis" it supersedes my "Differential Geometry and Symmetric Spaces," published in 1962. Since that time several branches of the subject, particularly the function theory on symmetric spaces, have developed substantially. I felt that an expanded treatment might now be useful.




Differential Geometry


Book Description

The Mathematical Works of J. H. C. Whitehead, Volume 1: Differential Geometry contains all of Whitehead's published work on differential geometry, along with some papers on algebras. Most of these were written in the period 1929-1937, but a few later articles are included. The book begins with a list of Whitehead's works, in chronological order of writing as well as a biographical note by M. H. A. Newman and Barbara Whitehead, and a mathematical appreciation by John Milnor. This is followed by separate chapters on topics such as linear connections; a method of obtaining normal representations for a projective connection; representation of projective spaces; convex regions in the geometry of paths; locally homogeneous spaces in differential geometry; and the decomposition of an infinitesimal group. Also included are chapters on locally homogeneous spaces in differential geometry; Maurer's equations; linear associative algebras; an expression of Hopf's invariant as an integral; and normalizators of transformation groups.




Geometry of Lie Groups


Book Description

This book is the result of many years of research in Non-Euclidean Geometries and Geometry of Lie groups, as well as teaching at Moscow State University (1947- 1949), Azerbaijan State University (Baku) (1950-1955), Kolomna Pedagogical Col lege (1955-1970), Moscow Pedagogical University (1971-1990), and Pennsylvania State University (1990-1995). My first books on Non-Euclidean Geometries and Geometry of Lie groups were written in Russian and published in Moscow: Non-Euclidean Geometries (1955) [Ro1] , Multidimensional Spaces (1966) [Ro2] , and Non-Euclidean Spaces (1969) [Ro3]. In [Ro1] I considered non-Euclidean geometries in the broad sense, as geometry of simple Lie groups, since classical non-Euclidean geometries, hyperbolic and elliptic, are geometries of simple Lie groups of classes Bn and D , and geometries of complex n and quaternionic Hermitian elliptic and hyperbolic spaces are geometries of simple Lie groups of classes An and en. [Ro1] contains an exposition of the geometry of classical real non-Euclidean spaces and their interpretations as hyperspheres with identified antipodal points in Euclidean or pseudo-Euclidean spaces, and in projective and conformal spaces. Numerous interpretations of various spaces different from our usual space allow us, like stereoscopic vision, to see many traits of these spaces absent in the usual space.




Geometric Group Theory


Book Description

The key idea in geometric group theory is to study infinite groups by endowing them with a metric and treating them as geometric spaces. This applies to many groups naturally appearing in topology, geometry, and algebra, such as fundamental groups of manifolds, groups of matrices with integer coefficients, etc. The primary focus of this book is to cover the foundations of geometric group theory, including coarse topology, ultralimits and asymptotic cones, hyperbolic groups, isoperimetric inequalities, growth of groups, amenability, Kazhdan's Property (T) and the Haagerup property, as well as their characterizations in terms of group actions on median spaces and spaces with walls. The book contains proofs of several fundamental results of geometric group theory, such as Gromov's theorem on groups of polynomial growth, Tits's alternative, Stallings's theorem on ends of groups, Dunwoody's accessibility theorem, the Mostow Rigidity Theorem, and quasiisometric rigidity theorems of Tukia and Schwartz. This is the first book in which geometric group theory is presented in a form accessible to advanced graduate students and young research mathematicians. It fills a big gap in the literature and will be used by researchers in geometric group theory and its applications.




Geometry, Rigidity, and Group Actions


Book Description

The study of group actions is more than a hundred years old but remains to this day a vibrant and widely studied topic in a variety of mathematic fields. A central development in the last fifty years is the phenomenon of rigidity, whereby one can classify actions of certain groups, such as lattices in semi-simple Lie groups. This provides a way to classify all possible symmetries of important spaces and all spaces admitting given symmetries. Paradigmatic results can be found in the seminal work of George Mostow, Gergory Margulis, and Robert J. Zimmer, among others. The papers in Geometry, Rigidity, and Group Actions explore the role of group actions and rigidity in several areas of mathematics, including ergodic theory, dynamics, geometry, topology, and the algebraic properties of representation varieties. In some cases, the dynamics of the possible group actions are the principal focus of inquiry. In other cases, the dynamics of group actions are a tool for proving theorems about algebra, geometry, or topology. This volume contains surveys of some of the main directions in the field, as well as research articles on topics of current interest.




Lie Groups, Lie Algebras, and Some of Their Applications


Book Description

This text introduces upper-level undergraduates to Lie group theory and physical applications. It further illustrates Lie group theory's role in several fields of physics. 1974 edition. Includes 75 figures and 17 tables, exercises and problems.




Topics in Groups and Geometry


Book Description

This book provides a detailed exposition of a wide range of topics in geometric group theory, inspired by Gromov’s pivotal work in the 1980s. It includes classical theorems on nilpotent groups and solvable groups, a fundamental study of the growth of groups, a detailed look at asymptotic cones, and a discussion of related subjects including filters and ultrafilters, dimension theory, hyperbolic geometry, amenability, the Burnside problem, and random walks on groups. The results are unified under the common theme of Gromov’s theorem, namely that finitely generated groups of polynomial growth are virtually nilpotent. This beautiful result gave birth to a fascinating new area of research which is still active today. The purpose of the book is to collect these naturally related results together in one place, most of which are scattered throughout the literature, some of them appearing here in book form for the first time. In this way, the connections between these topics are revealed, providing a pleasant introduction to geometric group theory based on ideas surrounding Gromov's theorem. The book will be of interest to mature undergraduate and graduate students in mathematics who are familiar with basic group theory and topology, and who wish to learn more about geometric, analytic, and probabilistic aspects of infinite groups.




Geometry, Topology, and Dynamics in Negative Curvature


Book Description

The ICM 2010 satellite conference 'Geometry, Topology and Dynamics in Negative Curvature' afforded an excellent opportunity to discuss various aspects of this fascinating interdisciplinary subject in which methods and techniques from geometry, topology, and dynamics often interact in novel and interesting ways. Containing ten survey articles written by some of the leading experts in the field, this proceedings volume provides an overview of important recent developments relating to negative curvature. Topics covered include homogeneous dynamics, harmonic manifolds, the Atiyah Conjecture, counting circles and arcs, and hyperbolic buildings. Each author pays particular attention to the expository aspects, making the book particularly useful for graduate students and mathematicians interested in transitioning from other areas via the common theme of negative curvature.




Differential Geometry For Physicists And Mathematicians: Moving Frames And Differential Forms: From Euclid Past Riemann


Book Description

This is a book that the author wishes had been available to him when he was student. It reflects his interest in knowing (like expert mathematicians) the most relevant mathematics for theoretical physics, but in the style of physicists. This means that one is not facing the study of a collection of definitions, remarks, theorems, corollaries, lemmas, etc. but a narrative — almost like a story being told — that does not impede sophistication and deep results.It covers differential geometry far beyond what general relativists perceive they need to know. And it introduces readers to other areas of mathematics that are of interest to physicists and mathematicians, but are largely overlooked. Among these is Clifford Algebra and its uses in conjunction with differential forms and moving frames. It opens new research vistas that expand the subject matter.In an appendix on the classical theory of curves and surfaces, the author slashes not only the main proofs of the traditional approach, which uses vector calculus, but even existing treatments that also use differential forms for the same purpose.