Geometry III


Book Description

A volume devoted to the extremely clear and intrinsically beautiful theory of two-dimensional surfaces in Euclidean spaces. The main focus is on the connection between the theory of embedded surfaces and two-dimensional Riemannian geometry, and the influence of properties of intrinsic metrics on the geometry of surfaces.




Geometry III


Book Description

A volume devoted to the extremely clear and intrinsically beautiful theory of two-dimensional surfaces in Euclidean spaces. The main focus is on the connection between the theory of embedded surfaces and two-dimensional Riemannian geometry, and the influence of properties of intrinsic metrics on the geometry of surfaces.




Aspects of Differential Geometry III


Book Description

Differential Geometry is a wide field. We have chosen to concentrate upon certain aspects that are appropriate for an introduction to the subject; we have not attempted an encyclopedic treatment. Book III is aimed at the first-year graduate level but is certainly accessible to advanced undergraduates. It deals with invariance theory and discusses invariants both of Weyl and not of Weyl type; the Chern‒Gauss‒Bonnet formula is treated from this point of view. Homothety homogeneity, local homogeneity, stability theorems, and Walker geometry are discussed. Ricci solitons are presented in the contexts of Riemannian, Lorentzian, and affine geometry.




Fundamentals of Diophantine Geometry


Book Description

Diophantine problems represent some of the strongest aesthetic attractions to algebraic geometry. They consist in giving criteria for the existence of solutions of algebraic equations in rings and fields, and eventually for the number of such solutions. The fundamental ring of interest is the ring of ordinary integers Z, and the fundamental field of interest is the field Q of rational numbers. One discovers rapidly that to have all the technical freedom needed in handling general problems, one must consider rings and fields of finite type over the integers and rationals. Furthermore, one is led to consider also finite fields, p-adic fields (including the real and complex numbers) as representing a localization of the problems under consideration. We shall deal with global problems, all of which will be of a qualitative nature. On the one hand we have curves defined over say the rational numbers. Ifthe curve is affine one may ask for its points in Z, and thanks to Siegel, one can classify all curves which have infinitely many integral points. This problem is treated in Chapter VII. One may ask also for those which have infinitely many rational points, and for this, there is only Mordell's conjecture that if the genus is :;;; 2, then there is only a finite number of rational points.




Modern Geometry— Methods and Applications


Book Description

Up until recently, Riemannian geometry and basic topology were not included, even by departments or faculties of mathematics, as compulsory subjects in a university-level mathematical education. The standard courses in the classical differential geometry of curves and surfaces which were given instead (and still are given in some places) have come gradually to be viewed as anachronisms. However, there has been hitherto no unanimous agreement as to exactly how such courses should be brought up to date, that is to say, which parts of modern geometry should be regarded as absolutely essential to a modern mathematical education, and what might be the appropriate level of abstractness of their exposition. The task of designing a modernized course in geometry was begun in 1971 in the mechanics division of the Faculty of Mechanics and Mathematics of Moscow State University. The subject-matter and level of abstractness of its exposition were dictated by the view that, in addition to the geometry of curves and surfaces, the following topics are certainly useful in the various areas of application of mathematics (especially in elasticity and relativity, to name but two), and are therefore essential: the theory of tensors (including covariant differentiation of them); Riemannian curvature; geodesics and the calculus of variations (including the conservation laws and Hamiltonian formalism); the particular case of skew-symmetric tensors (i. e.




Algebraic Geometry: Further study of schemes


Book Description

This is the third part of the textbook on algebraic geometry by Kenji Ueno (the first two parts were published by the AMS as Volumes 185 and 197 of this series). Here the author presents the theory of schemes and sheaves beyond introductory notions, with the goal of studying properties of schemes and coherent sheaves necessary for full development of modern algebraic geometry. The main topics discussed in the book include dimension theory, flat and proper morphisms, regular schemes, smooth morphisms, completion and Zariski's main theorem. The author also presents the theory of algebraic curves and their Jacobians and the relation between algebraic and analytic geometry, including Kodaira's Vanishing Theorem. The book contains numerous exercises and problems with solutions, which makes it (together with two previous parts) appropriate for a graduate course on algebraic geometry or for self-study.




Foliations and the Geometry of 3-Manifolds


Book Description

This unique reference, aimed at research topologists, gives an exposition of the 'pseudo-Anosov' theory of foliations of 3-manifolds. This theory generalizes Thurston's theory of surface automorphisms and reveals an intimate connection between dynamics, geometry and topology in 3 dimensions. Significant themes returned to throughout the text include the importance of geometry, especially the hyperbolic geometry of surfaces, the importance of monotonicity, especially in1-dimensional and co-dimensional dynamics, and combinatorial approximation, using finite combinatorical objects such as train-tracks, branched surfaces and hierarchies to carry more complicated continuous objects.




A Differential Approach to Geometry


Book Description

This book presents the classical theory of curves in the plane and three-dimensional space, and the classical theory of surfaces in three-dimensional space. It pays particular attention to the historical development of the theory and the preliminary approaches that support contemporary geometrical notions. It includes a chapter that lists a very wide scope of plane curves and their properties. The book approaches the threshold of algebraic topology, providing an integrated presentation fully accessible to undergraduate-level students. At the end of the 17th century, Newton and Leibniz developed differential calculus, thus making available the very wide range of differentiable functions, not just those constructed from polynomials. During the 18th century, Euler applied these ideas to establish what is still today the classical theory of most general curves and surfaces, largely used in engineering. Enter this fascinating world through amazing theorems and a wide supply of surprising examples. Reach the doors of algebraic topology by discovering just how an integer (= the Euler-Poincaré characteristics) associated with a surface gives you a lot of interesting information on the shape of the surface. And penetrate the intriguing world of Riemannian geometry, the geometry that underlies the theory of relativity. The book is of interest to all those who teach classical differential geometry up to quite an advanced level. The chapter on Riemannian geometry is of great interest to those who have to “intuitively” introduce students to the highly technical nature of this branch of mathematics, in particular when preparing students for courses on relativity.




Lie Groups and Lie Algebras III


Book Description

A comprehensive and modern account of the structure and classification of Lie groups and finite-dimensional Lie algebras, by internationally known specialists in the field. This Encyclopaedia volume will be immensely useful to graduate students in differential geometry, algebra and theoretical physics.




Number Theory III


Book Description

In 1988 Shafarevich asked me to write a volume for the Encyclopaedia of Mathematical Sciences on Diophantine Geometry. I said yes, and here is the volume. By definition, diophantine problems concern the solutions of equations in integers, or rational numbers, or various generalizations, such as finitely generated rings over Z or finitely generated fields over Q. The word Geometry is tacked on to suggest geometric methods. This means that the present volume is not elementary. For a survey of some basic problems with a much more elementary approach, see [La 9Oc]. The field of diophantine geometry is now moving quite rapidly. Out standing conjectures ranging from decades back are being proved. I have tried to give the book some sort of coherence and permanence by em phasizing structural conjectures as much as results, so that one has a clear picture of the field. On the whole, I omit proofs, according to the boundary conditions of the encyclopedia. On some occasions I do give some ideas for the proofs when these are especially important. In any case, a lengthy bibliography refers to papers and books where proofs may be found. I have also followed Shafarevich's suggestion to give examples, and I have especially chosen these examples which show how some classical problems do or do not get solved by contemporary in sights. Fermat's last theorem occupies an intermediate position. Al though it is not proved, it is not an isolated problem any more.